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Abstract — LAW and ORDER in ALGORITHMICS

An algorithm is the input-output effect of a computer program; mathematically, the notion
of algorithm comes close to the notion of function. Just as arithmetic is the theory and
practice of calculating with numbers, so is ALGORITHMICS the theory and practice of
calculating with algorithms. Just as a law in arithmetic is an equation between numbers,
like a(b + c) = ab + ac , so is a LAW in algorithmics an equation between algorithms.
The goal of the research done is: (extending algorithmics by) the systematic detection
and use of laws for algorithms. To this end category theory (a branch of mathematics) is
used to formalise the notion of algorithm, and to formally prove theorems and laws about
algorithms.

The underlying motivation for the research is the conviction that algorithmics may be
of help in the construction of computer programs, just as arithmetic is of help in solving
numeric problems. In particular, algorithmics provides the means to derive computer
programs by calculation, from a given specification of the input-output effect.

In Chapter 2 the systematic detection and use of laws is applied to category theory
itself. The result is a way to conduct and present proofs in category theory, that is an
alternative to the conventional way (diagram chasing).

In Chapter 3–4 several laws are formally derived in a systematic fashion. These laws
facilitate to calculate with those algorithms that are defined by induction on their input,
or on their output. Technically, initial algebras and terminal co-algebras play an crucial
role here.

In Chapter 5 a category theoretic formalisation of the notion of law itself is derived and
investigated. This result provides a tool to formulate and prove theorems about laws-in-
general, and, more specifically, about equationally specified datatypes.

Finally, in Chapter 6 laws are derived for arbitrary recursive algorithms. Here the
notion of ORDER plays a crucial role. The results are relevant for current functional
programming languages.

iii
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Chapter 1

Introduction

1a The theme of this text

There are various ways in which computer programs may be produced. In this text we are
concerned with just one of them: the transformational method. In this method a specifica-
tion is assumed to be given, and a program is derived by a stepwise transformation of the
specification until an expression is obtained that is a satisfactory computer program. More
specifically, we are concerned with that transformational approach to program construc-
tion in which the transformation steps are very similar to, if not essentially the same as, in
high school algebra: in each step a part of the expression is replaced by an operationally
different but semantically equivalent part, like the replacement of (a+ b)(a− b) by a2− b2

or the other way around.
Needless to say that our concern is but one, small aspect of the production of computer

programs. In particular, it may be much harder to obtain a satisfactory formal specification
of the informal requirements, than to transform the specification into a program.

1 Algorithm. Computer programs are quite complicated entities; there are many as-
pects that make the production of programs a difficult task. To get some grip on the
production, it is wise to deal with the aspects in isolation, or one after the other, as much
as possible. In this text we abstract from almost all aspects of a program except its input-
output behaviour; what remains is mathematically known as a function. We shall speak of
algorithm rather than function in order to allow for some aspects that do not make sense
for functions, and to keep in mind the intended interpretation as a computer program. An
algorithm is a computer program of which several aspects have been abstracted from.

We can now explain the words algorithmics, law and order from the title.

2 Algorithmics. By definition algorithmics is: the theory and practice of calculating
with algorithms. Compare this with arithmetic: the theory and practice of calculating
with numbers. To illustrate the latter, suppose a number x is specified by

ax2 + bx + c = 0 .

1



2 Chapter 1. Introduction

It is possible to calculate, rather than guess or ‘just invent’, numbers x that satisfy the

specification, for instance x = (−b +
√

(b2 − 4ac))/2a . To illustrate the former, sup-
pose a list producing algorithm f is specified as follows, using the notation of Bird and
Wadler [11].

y ∈ fx ≡ y −−x = [ ] ∧ x−−y = [ ],

that is, fx yields a list containing all permutations of the list x . It is possible to calculate,
rather than guess or ‘just invent’, algorithms f that satisfy the specification, for instance

f [ ] = [ [ ] ]
f (x: y) = concat (map (interleave x) (f y)) ,

where we don’t bother to detail interleave any further.
In both algorithmics and arithmetic the calculations are based on calculation rules

that describe properties of algorithms and numbers, respectively. In both algorithmics and
arithmetic theorems may be used to take bigger steps in a calculation. In both algorithmics
and arithmetic there is ample opportunity for machine assistance. In both algorithmics
and arithmetic one cannot delegate the whole calculation of a solution for a specification
to a machine, and human creativity (invention, eurekas) is needed. There seems to be no
difference between algorithmics and arithmetic except for the entities that are dealt with:
algorithms and numbers respectively. Yet this is a significant difference because algorithms
are so much more complicated than numbers. In comparison with the theoretical and
practical results of arithmetic, one might say that algorithmics is just in its infancy.

The further development of the theory part of algorithmics is a major theme throughout
the entire text.

3 Law. In arithmetic there is a property saying that addition is associative; it is fre-
quently used as a step in a calculation (usually implicitly). We call such a property a
law; laws form the justifications for the steps in a calculation. A similar law relevant for
algorithmics is the associativity of sequential composition (where the output of the first
algorithm is the input for the second one).

The systematic use and production (invention, derivation) of such laws is a major theme
throughout the entire text; not only within algorithmics but also —as a side effect— within
category theory. Moreover, in Chapter 5 we develop, or rather propose and investigate, a
semantic characterisation of the notion of law.

4 Order. Two algorithms f and g may be placed in an order relation, f w g, according
to the criterion whether f produces the same output as g does, for each input where g
produces something. Such an order models the phenomenon in reality that one program
f may differ from another program g only in that g does not terminate for some inputs
for which f does.

Such an order —and its consequences for algorithmics— is the central theme of the
investigations in Chapter 6.

* * *



1a. The theme of this text 3

So much for an explanation of the words in the title. Algebra and category theory are
topics that also play a rôle in this text.

5 Algebra. The word algebra is used in this text in two meanings. In its technical
meaning an algebra is a collection of operations together with a set on which the operations
act. In a nontechnical sense algebra is the art of manipulating with formulas as in high
school algebra: a formula F is broken up into its semantic relevant constituents and the
pieces are assembled together into a different but semantic equivalent formula F ′ , thus
yielding the equality F = F ′ .

The choice of notation may greatly influence the ability to isolate the semantic relevant
constituents. Consider for example the following five line law, in the notation of Bird and
Wadler [11].

∀(x, y :: h(g(x, y)) = g′(x, hy)) ⇒ h ◦ f = f ′

where
f [ ] = e
f (x: y) = g(x, fy)
f ′ [ ] = h e
f ′ (x: y) = g′(x, f ′y) .

In the notation of the sequel this law takes just one line:

h ◦ g = g′ ◦ id × h ⇒ h ◦ ([e, g]) = ([h e, g′]) .

The dummies x, y have been eliminated, and the recursion pattern has been captured by
a single operation ([ ]) so that f together with its entire definition is replaced by ([e, g]) .
In ([e, g]) the three semantic relevant constituents are clear: e, g, and ([ ]) .

Algebraic calculation is a major concern in this text.

6 Category Theory. Category theory is the study that seeks to unify concepts and
constructions in various fields of mathematics. It achieves this goal by the use of a language,
a formalism, which allows for various interpretations and, conversely, in which many diverse
concepts and constructions can be expressed after suitable abstraction. The language has
two beneficial aspects. First, there is an elegant style of expressing and proof (equational
reasoning); for our intended interpretation in algorithmics this happens to be reasoning
at the function level, without a need for introducing arguments explicitly. Second, the
language often suggests or eases a far-reaching generalisation.

Because of these two reasons we shall use the framework of category theory.

7 Related research. Transformational programming is by no means new; Partsch [57]
gives an extensive overview of current approaches. The more specific approach of algo-
rithmics, namely an algebraic calculational style, has already been mentioned as early
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as 1969 by Burstall and Landin [13] and in 1978 by Backus [6]. Algorithmics, as de-
fined above, was first formulated by Meertens [47], and was around the same time fur-
ther developed for a particular datatype by Bird [9, 10]. Algorithmics is now being
explored and extended by a number of research groups, in the Netherlands and Great
Britain [3, 5, 18, 19, 21, 22, 33, 34, 36, 48, 53, 54, 55, 56, 70, 76].

Bird [9, 10] identified several laws for the datatype of lists, and put them to use in actual
calculations of algorithms. It was well-know that datatypes like lists could be described
categorically, using the notion of initiality. For example, Spivey [69] derived several of
Bird’s laws for the datatype of lists from the categorical description. Moreover, Hagino [29,
30] showed that the dual of initiality, namely finality, can be used to define cartesian
product and infinite datatypes like streams. Subsequently, Malcolm [42, 43] showed that
the category theoretic approach lends itself well to actual calculation of algorithms.

An early attempt to exploit initiality for actual programming has been made by Aiello
et al. [1] in 1978; apparently their work escaped the attention of computing scientists. The
importance of initiality as a principle of proof has already been observed by Lehmann
and Smyth [40]. Also Goguen [26] observes that initiality allows proofs by induction to be
formulated without induction, and Backhouse [4] and Meertens [49] show the advantage of
this for a practical calculus of algorithms: the induction-less proof steps are more compact
and purely calculational.

There are many more aspects to algorithmics than covered in this text. For example, we
do not give any large-scale calculation of an algorithm; Jeuring [35] and Jones [36] give
nontrivial calculations. We do not present any high-level algorithmics theorem that is
problem oriented rather than datatype oriented; in [21] we attempt at such a theorem.
We do not say anything about indeterminacy and underspecification; Backhouse et al. [5],
De Moor [53] and our case study [20] address this topic. We do not say anything about
machine-assistance, nor about the design of a notation that is geared towards use in actual
calculation. And so on.

8 Our contribution. This text is a continuation of the line set out by Malcolm [42, 43].
In Chapter 3 we give a categorical description of algorithmics that is heavily inspired
by Malcolm and Hagino [30, 29]. That chapter contains no new results; what is new
is the motivation for considering dialgebras, and several examples. We systematise the
production and use of laws that govern the steps in a calculation; this occurs throughout
the text. We apply the systematisation also to category theory itself, thus offering an
alternative to the conventional style of proof in category theory, diagram chasing; this is
done in Chapter 2.

Some small-scale contributions to algorithmics occur in Chapters 4–6. In Chapter 4 we
produce several derived laws, and show them in action to prove some problems that puzzled
me for a long time. In Chapter 5 we propose and investigate a semantic characterisation
of the notion of law, thus offering a tool to investigate ‘laws’ in the same abstract way
in which, say, ‘algebras’ may be investigated. Finally, in Chapter 6 we investigate the
extension of the theory (production and use of laws) to a situation where a datatype is
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not initial with respect to the entire universe of discourse (though it is initial in a subset
of that universe). This is relevant for programming with arbitrary recursive definitions, as
in functional programming languages.

1b Preliminaries

9 What you should know about category theory. With the exception of Sec-
tions 2d–2f, there occur in this text a few concepts of category theory. The concepts are:
category, isomorphism, duality, functor and naturality. If you are not familiar with these,
it suffices to read the appendix.

From here onwards you are assumed to know these five concepts,
as well as the notions of cartesian product and disjoint union of sets.

Initiality and finality is explained in Section 2b; you should read that section anyway since
it explains our way of exploiting and proving initiality properties.

10 The format of a calculation. We present a calculation in the way we have actually
derived it (or would like to have derived it). The task of a calculation is to find a definition
for some, possibly none, unknowns and to prove an equation or equivalence that contains
the unknowns. In general we start with the main task and reduce it step by step to simpler
tasks, until we finally arrive at true . In each step we apply a known fact, or define an
unknown possibly in terms of new unknows, or, in order to proceed, assume that some
property holds. In the end, all the definitions made along the way constitute a construction
of the unknowns, and the assumptions remain as premises that imply the validity of the
start equation or equivalence.

Sometimes a calculation can more elegantly be conducted and presented as a trans-
formation between the left hand side of the equality (or equivalence) and the right hand
side, using equalities (or equivalences) only. In such a case we usually start with the more
complicated side, and transform it step by step to the simpler one.

This style of conducting and reading proofs requires some exercising to get used to; once
mastered it turns out to be an effective way of working. Dijkstra and Scholten [16] discuss
this style in detail, and attribute the calculational format to Feijen, and van Gasteren [25].

11 Notation. Here is the default typing of frequently occurring one-letter variables.
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A,B, C categories
A, . . . , Z functors
M sumtype and prodtype functors (formerly map functors)
T transformer (special functor, Chapter 5 only)
†, ‡ bifunctors (infix notation)
a, b, c, . . . objects
e, f, g, h, j, . . . morphisms
ϕ, ψ, χ, . . . algebras (special morphisms)
α, β initial and final algebras
γ, δ, ε, η natural transformations ( γ, δ cones and cocones)
x, y, z various entities (mostly morphisms but also objects)
F mapping on morphisms, not necessarily a functor.

One-letter variables B,C,K, I, L, S, U have a fixed meaning; I, L, S are explained below,
U is the underlying functor introduced in Chapter 3, C,K occur in Chapter 2 only, and
B in the examples of Chapter 5.

Formula f : a →A b means that f is a morphism in A with source a and target b
( srcA f = a and tgtA f = b ). We denote composition arrows of the “base” category (and
all the categories that inherit its composition) in diagrammatic order: if f : a → b and
g: b → c then f ; g: a → c . Composition of functors and other mappings is denoted
by juxtaposition: (FG)f = F (Gf) . If † is a bifunctor (like × and + ) and F,G are
functors, then F †G denotes the functor defined by (F †G)x = Fx†Gx for all objects and
morphisms x . In particular, II = I × I ; it maps each x onto x× x . Following common
practice we omit the subscript of a natural transformation if it can be derived or is clear
from the context. Also, we assume in each formula that the free variables are typed in
such a way that the formula makes sense, that is, the targets and sources match at each
composition and objects and morphisms are in the appropriate category.

Product and Sum. In case you want to skip Section 2c where the categorical product
and sum (coproduct) are discussed, we list here the notation that we use for them. The
product functor is denoted × , the extractions (projections) are denoted exl , exr or, for
three components, ex 3,0, ex 3,1, ex 3,2 , and we write f ∆ g ( f split g ) for what is commonly
denoted (f, g) . The notation for the sum suggests the duality: bifunctor + and injections
inl , inr or inn,i , and f ∇ g ( f junc g ) for [f, g] . (For product categories the extraction
functors are denoted Exl ,Exr while the symbol ∆ also denotes the tupling (pairing) of
functors.)

Default category. The declaration that a category is the default category means
that it is this category that should be mentioned whenever the notions or notations in the
text require that some category be mentioned. We shall only use Set and identifier C as
the default category. So, in particular, →C is often abbreviated to just → if C has been
declared the default category.

Omitting objects. A functor is mainly a mapping of morphisms; its action on objects
can be derived since Fa = tgtF id a by one of the functor axioms. In the same vein, we
shall define concepts in terms of morphisms as much as possible, and suppress the rôle of
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objects when it can be derived from the context.
Parsing. Juxtaposition associates to the right, so that UµFa = U(µ(Fa)) , and binds

stronger than any binary operation symbol, so that Fa † = (Fa)† . Binary operation
symbol ; binds the weakest of all operation symbols in a term denoting a morphism. As
usual, × has priority over + .

12 Naturals, lists, streams. We shall frequently use naturals, cons lists, cons′ lists,
and streams in examples, assuming that you know these concepts. Here is some informal
explanation; the default category is Set .

A distinguished one-element set is denoted 1 . Function !a: a → 1 is the unique
function from a to 1 . Constants, like the number zero, will be modeled by functions with
1 as source, thus zero: 1 → nat . The sole member of 1 is sometimes written ( ) , so that
zero( ) ∈ nat and zero is called a nullary function.

For the naturals we use several known operations.

zero : 1 → nat zero, considered as a function from 1

succ : nat → nat the successor function
add : II nat → nat addition .

The set nat consists of all natural numbers. Functions on nat may be defined by induction
on the zero, succ -structure of their argument.

For lists we distinguish between several variants.
The datatype of cons lists over a has as carrier the set La that consists of finite lists
only. There are two functions nil and cons .

nil : 1 → La
cons : a× La→ La .

Depending on the context, nil and cons are fixed for one specific set a , or they are
considered to be polymorphic, that is, having the indicated type for each set a . In a very
few cases a subscript will make this explicit. Each element from La can be written as a
finite expression

cons(x0, cons(x1, . . . cons(xn−1, nil))) .

So, functions over La can be defined by induction on the nil , cons structure of their
argument. For example, definitions of size: La→ nat and isempty : La→ La+La read

nil ; size = zero
cons ; size = id × size ; exr ; succ

and
nil ; isempty = nil ; inl
cons ; isempty = cons ; inr .

Function isempty sends its argument unaffected to the left/right component of its result
type according to whether it is/isn’t the empty list. A boolean result may be obtained
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by post-composing isempty with true ∇ false , see paragraph 11 or Section 2c for the case
construct ∇ . For each function f : a→ b the so-called map f for cons lists, denoted Lf ,
is defined by

nila ; Lf = nil b
consa ; Lf = f × Lf ; consb .

If L were a functor, these equations assert that nil and cons are natural transformations:

nil : 1 .→ L
cons : I × L .→ L .

We shall see that L really is a functor.
The datatype of streams over a has as carrier the set Sa that consists of infinite lists

only. There are two functions to destruct a stream into a head in a and a tail that is a
stream over a again.

hd : Sa→ a
tl : Sa→ Sa .

A function yielding a stream can be defined by inductively describing what its result is, in
terms of applications of hd and tl . For example, the lists of naturals is defined as follows.

from : nat → S nat
from ; hd = id
from ; tl = succ ; from

nats : 1 → S nat
nats = zero ; from

By induction on n one can prove that

nats ; tln ; hd = zero ; succn .

These functions act on infinite datastructures and the evaluation of nats on a computing
engine requires an infinite amount of time. Yet these functions are total; for each argument
the result is well-defined. For each function f : a → b the so-called map f for streams,
denoted Sf , is defined by

Sf ; hd b = hda ; f
Sf ; tl b = tl a ; Sf .

If S were a functor, these equations assert that hd and tl are natural transformations:

hd : S .→ I
tl : S .→ S .

We shall see that S really is a functor.
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The datatype of cons′ lists over a has as carrier the set L′a that consists of all finite
and infinite lists, called cons′ lists. There are several relevant functions.

nil ′ : 1 → L′a
cons ′ : a× L′a→ L′a
destruct ′ : L′a→ 1 + a× L′a
isempty ′ : L′a→ L′a+ L′a

with
nil ′ ; destruct ′ = inl
cons ′ ; destruct ′ = inr
nil ′ ; isempty ′ = nil ′ ; inl
cons ′ ; isempty ′ = cons ′ ; inr .

Since cons′ lists are possibly infinite, ‘definition’ by induction on the nil ′, cons ′ -structure
of cons′ lists is in general not possible; that would give partially defined functions, and
these do not exist in our intended universe of discourse Set . For example, consider the
following equations with “unknown size ′ ”.

nil ′ ; size ′ = zero
cons ′ ; size ′ = id × size ′ ; exr ; succ

These do not define a total function size ′: L′a → nat , in contrast to the situation for
cons lists. (Notice also the difference with the usual datatype of lists of nonstrict functional
programming languages: next to finite and infinite lists, it comprises also partially defined
lists.)



10 Chapter 1. Introduction



Chapter 2

Categories algebraically

‘Diagram chasing’ is an established proof technique in Category Theory. Alge-
braic calculation is a good alternative; made possible thanks to a notation for
various unique arrows and a suitable formulation of initiality, and the properties
brought forward by initiality.

2a Introduction

Category Theory [41] is a field of mathematics that seeks to discuss and unify many
concepts occurring in mathematics. In the last decade it has proved useful for computing
science as well; this may be evident from the rapidly growing number of conferences and
publications with ‘Category Theory’ and ‘Computer Science’ in their title, for example [31,
7, 61, 62, 28, 65]. Not only is category theory helpful to formalise and prove results
for theoretical aspects of computing science, like lambda calculus theory, denotational
semantics, and fundamentals of algebraic specification, but also to formalise and prove
results for practical aspects like language design and implementation (e.g., Hagino [30, 29],
Reynolds [64] and Cousineau et al [14]) and program derivation (e.g., Malcolm [42, 43],
Meijer [50], Paterson [59], and this text).

In this chapter we pave the way for a style of proof that is an alternative to the
conventional one in Category Theory: calculation instead of diagram chasing. In effect, it
is a form of Functional Programming. Let us explain the key-words.

1 Category. Roughly said, a category is just a collection of arrows with the closure
property that “composition of two arrows f and g with target(f) = source(g) , is an
arrow again.” Thus, a mathematical structure, when studied categorically, has to be
modeled as a system of arrows. This may pose serious problems to the newcomer; Arbib

11
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and Manes [2] teach how to think in terms of arrows. The prominent rôle of arrows invites
to use pictures containing (a lot of) arrows, so-called diagrams, as a tool in categorical
proofs. The conventional style of proof is diagram chasing (explained below); we offer
an alternative: algebraic calculation. To do so, we give a systematic treatment of the
calculation properties brought forward by initiality, and show them in action on a variety
of examples. Initiality is a categorical concept by which many mathematical constructions
can be characterised.

2 Diagrams and diagram chasing. The basic task in a categorical proof is to show
the existence of an arrow, or to show the equality of two arrows, when some other arrows
and objects are given. There are several reasons why diagrams may be helpful, and one
has to face all of them when judging the relative merits of an alternative style of proof.
Let us consider (all?) four of these reasons.

• Typing. A picture may clearly indicate which arrows have a common source or
target, much more so than a linear listing of the arrows with the source and target
given for each of them.

Remark. The need for a survey of the sources and targets of the arrows is partly
caused by the notation f : a → b and g: b → c to indicate the source and target
(called typing), and the notation g ◦f for their composition. We choose the notation
f ; g for composition, so that f ; g: a→ c falls out naturally. (An alternative would
be to use the notation f : a← b and g: b← c so that f ◦ g: a← c .)
Though a consistent notation obviates in some cases the need for a survey of the
common sources and targets, we do not claim that it does so in all cases. Pictures
are helpful in presenting and viewing the data in an organised way.

• Naming. Initiality means that for certain pairs of source and target there is precisely
one arrow in between. A picture is a suitable tool to indicate such an arrow, typically
by a dashed line, and to attach a name to it for use in the text. Without pictures
one usually introduces such an arrow by a phrase like “Let f be the unique arrow
from this to that that exists on account of the initiality of such-and-so .”

Remark. We shall use a standard notation for various ‘unique’ arrows; the notation
will clearly suggest the source and target, as well as some other properties. Thanks to
the availability of a notation there is no need to interrupt an argument or calculation
for a verbose introduction of such an arrow: you can just denote it.

• Commuting diagrams. Equality of arrows can be indicated pictorially if, by conven-
tion, in the picture any two (composite) arrows with the same source and the same
target are equal. Thus f ; g = h appears as a triangle, and f ; g = h ; j as a
quadrangle. This convention is called commutativity of the diagram. A commuting
composite diagram is a very economical way of showing several equalities simulta-
neously without duplication of subterms that denote arrows. Moreover, the diagram
may present additional information, like sources and targets.
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Remark. I can hardly believe that a triangle with edges labelled f, g, h is clearer
than the formula f ; g = h , and a square with edges f, g, h, j is clearer than f ; g =
h ; j . In fact, even complicated formulas like f0 ; f1 ; . . . ; fm−1 = g0 ; g1 ; . . . ; gn−1

are not more (and no more) understandable by drawing the left-hand side and right-
hand side as a stretched, possibly wriggled quadrangle. In almost any diagram there
is one equation of interest (the theorem) and the other equations in the diagram
are just auxiliary, for use in the proof only; in that case there is no need to display
them all at once (if an alternative proof does the job). Similarly, the information
about source and target of each term occurring in a proof is often not helpful for
understanding the main equation or verifying the proof steps, as we will see.

• Diagram chasing. Pasting several commuting diagrams together along common ar-
rows gives a commuting diagram as result. It is an easy, visual, reliable style of
proving equality of arrows. Apart from the purpose to give an overview, as men-
tioned above, this is the main reason why composite diagrams appear that are more
complicated than the simple polygons.
It is particularly easy to extend a diagram with an arrow; in a calculation one would
have to copy the equation obtained thus far, and transform that a little.

Remark. This use of diagrams may be quite helpful when conducting a proof on a
blackboard, with an eraser at hand. (Also, it lends itself well for presentations with
an overhead projector, using overlays.) However, in the final picture the history is
completely lost. It is then just a puzzle, called diagram chasing, to find out what
arrows exist for what reason, and what subdiagrams commute on what grounds.
Moreover, it is even much harder to read off from the final diagram for what reason
a certain arrow is the only one possible that makes a certain subdiagram commute.
It is all this implicit information that is so clearly present in the calculations below.

So far for the reasons to use pictures and diagram chasing, and our objections to some of
these.

3 Calculation with initiality. There is no problem in presenting the pasting of two
diagrams as a calculation. For example, pasting ‘squares’

(a) ϕ ; f = p ; ψ and (b) ψ ; g = q ; χ

along ‘edge’ ψ yields ϕ ; f ; g = p ; q ; χ . This is rendered in a one or two step calculation
as follows.

ϕ ; f ; g = p ; q ; χ

≡ in left hand side (a): ϕ ; f = p ; ψ ,

in right hand side (b)∪: q ; χ = ψ ; g

p ; ψ ; g = p ; ψ ; g

≡ reflexivity of equality
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true.

More important is a formalisation of initiality that lends itself to such a calculational,
equational reasoning. By definition, a is initial if for each target b there is precisely one
arrow from a to b . Formally, a is initial if, for all b ,

∃(x :: x: a→ b ∧ ∀(y :: y: a→ b ⇒ y = x)) .

It is the presence of the existential quantifier (and the universal one in its scope) that
hinders equational reasoning. An equivalent formalisation of initiality of a reads: there
exists a function F such that, for all b and x ,

x: a→ b ≡ x = Fb .

Indeed, substituting x = Fb gives Fb: a → b (there is at least one arrow), and the
implies part of the equivalence gives that there is at most one arrow. We shall see that this
formalisation is the key to calculational reasoning. The use of equivalences to characterise
initiality (and more generally, universality) has been thoroughly advocated by Hoare [31].
As far as we know, Malcolm [42] was the first to use this style of reasoning in a formal way
for the derivation of functional programs over initial algebras.

4 Functional programming. In this text all arrows (in the sequel called morphisms)
in the “base” category may be interpreted as typed total functions; there is simply no
axiom for the category under consideration that prohibits this interpretation. Therefore
one may interpret our activity as functional programming, though for specifications that
are a bit unusual. The combinations and transformations of morphisms (functions) are
fully in the spirit of Backus [6] and Meertens [47]. One should note that nowhere in this
text a morphism (function) is applied to an argument, except in examples; it is just by
composing functions in various ways that new functions are formed and equalities are
proved. The absence of restrictions on combining functions (except for typing constraints)
has often been claimed to be a major benefit of functional programming, for example by
Backus [6] and Hughes [32].

5 Historical remark. Originally our interest was in the development of a calculus for
the derivation of algorithms from a specification, as proposed by Meertens [47] and Bird [9,
10]. Category theory provides a suitable medium to formalise the notion of datatype, as
shown by Lehmann and Smith [40], Manes and Arbib [45], and many others. Malcolm [42]
showed that actual calculations of algorithms can be rendered in a categorical style. It
is from here a small step to apply the calculational style of algorithm derivation more
generally to category theory itself.

The overall acceptance of diagram chasing is presumably the cause that this style
of deriving categorical properties is relatively unknown. Indeed, only recently books and
papers on category theory have appeared in which equational reasoning is explicitly strived
for; for example by Lambek and Scott [37], Hoare [31].
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6 Overview. The remainder of the chapter is organised as follows. In the next section
we define some lesser known categorical concepts and discuss initiality. Then we specialise
the laws for initiality to products and sums in Section 2c, to coequalisers and kernel pairs
in Section 2d, and to colimits in general in Section 2e. Each of these sections contains one
or more examples of a calculation for the derivation of a well-known result. We conclude
with a worked-out example in Section 2f: the construction of an induced congruence. Many
more examples of categorical calculations occur in the remainder of the text.

Sections 2b, 2c are essential for the following chapters; Sections 2d, 2e, and 2f may
be skipped without loss of continuity (but 2f depends on all preceding sections). Sec-
tions 2d, 2e, and 2f assume more familiarity with categorical concepts, and are intended
as a case study in the calculational approach to category theory.

The proof of the pudding is in the eating: the categorician should compare our algebraic
calculations with the usual pictorial proofs, and pay attention to the precision, conciseness,
and clarity with which various steps in the proofs are stated, and to the absence of verbose
or pictorial introductions of various unique arrows.

2b Preliminaries and Initiality

Throughout the chapter C is the default category.

7 Categories built upon C . Often an interesting construction in C can be charac-
terised by initiality in a category A built upon C . We say A is built upon C if: each
morphism of A is a -special- morphism in C and A’s composition and identities are that
of C . So, A is fully determined by defining its objects and morphisms. Moreover, ‘built
upon’ is a reflexive and transitive relation. Here are some examples that we’ll meet in the
sequel; skip the description upon first reading. (The categorician may recognise

∨
(D) as

the category of cocones for the diagram D . Dually, the category of cones for D is denoted∧
(D) . I owe these notations, and those for D below, to Jaap van der Woude.)

Category
∨

(~a) , where ~a is an n -tuple of objects in C . An object in
∨

(~a) is: an n -
tuple of morphisms in C with a common target and the objects ~a as sources, as suggested
by the symbol

∨
for the case n = 2 . Let ~f and ~g be such objects; then a morphism

from ~f to ~g in
∨

(~a) is: a morphism x in C satisfying fi ; x = gi for each index i of the

n -tuple. It follows that x: tgt ~f → tgt~g . (As a special case, category
∨

(a) is known as
the co-slice category ‘under a ’, usually denoted a/C .) An object in

∨
(a, a) is a parallel

pair with source a .

Category
∨

(f‖g) , where f and g are morphisms in C with a common source and
a common target. An object in

∨
(f‖g) is: a morphism p for which f ; p = g ; p . Let p

and q be such objects; then a morphism from p to q in
∨

(f‖g) is: a morphism x in C
satisfying p ; x = q . (So,

∨
(f‖g) is a full subcategory of

∨
(a) where a = tgt f = tgt g .)

Category
∨

(f g) , where f, g are morphisms in C with a common source. An
object in

∨
(f g) is: a tuple (h, j) satisfying f ; h = g ; j . Let (h, j) and (k, l) be
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two objects; then a morphism from (h, j) to (k, l) in
∨

(f g) is: a morphism x in C
satisfying h ; x = k and j ; x = l . (This category is used to define the pushout of f, g .)

Category Alg(F ) , where F is an endofunctor on C . An object ϕ of Alg(F ) is:
a morphism ϕ: Fa → a in C , for some a called the carrier of ϕ . Let ϕ and ψ be
such objects; then a morphism from ϕ to ψ in Alg(F ) is: a morphism x in C satisfying
ϕ ; x = Fx ; ψ . It follows that x: carrierϕ→ carrierψ , and carrierϕ = tgtϕ . An object
ϕ is called an F -algebra, and a morphism x is called an F -homomorphism. We shall
explain this in more detail in the chapters to come.

8 Initiality. Let A be a category, and a an object in A . Then a is initial in A if:
there exists a function ([a → ])A such that

x: a→A b ≡ x = ([a → b])A Charn

All free variables in the line are understood to be universally quantified, except those
that have been introduced in the immediate context (A and a in this case). ‘Charn’ is
mnemonic for Characterisation. The ⇒ part of Charn says that each morphism x with
a as its source, is uniquely determined by its target b (if it exists at all). From the ⇐
part, taking x := ([a → b])A , it follows that for each b there is a morphism from a to b .
Thus ([a → b])A is just the default notation, the default name, for the unique morphism
from a (depending on A, a and b ). Often there is a more specific notation that better
suggests the resulting properties (see the following sections).

Of course, when A is clear from the context we write ([a → b]) rather than ([a → b])A .
It often happens that one initial object in A is fixed, and in that case ([b]) abbreviates
([a → b]) . The usual notation for ([b])A is !b or ¡b . The ! -notation doesn’t work well
for categories built upon A since the notation of a and b may become too large for a
subscript. In the “base” category the notation 0 denotes an initial object.

Finality is dual to initiality; an object a is final if: for each object b there exists
precisely one morphism from b to a . The default notation for this unique morphism is
db(b → a)ecA , and the characterisation reads

x: b→A a ≡ x = db(b → a)ecA .

In the “base” category the notation 1 denotes a final object.

9 Corollaries. Here are some consequences of Charn. A substitution for x such that
the right-hand side becomes true yields Self, and a substitution for b, x such that the
left-hand side becomes true yields Id:

([a → b])A: a→A b Self

ida = ([a → a])A Id

Next we have the Uniqueness and Fusion property (still assuming a initial in A ):

x, y: a→A b ⇒ x = y Uniq
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x: b→A c ⇒ ([a → b])A ; x = ([a → c])A Fusion

The ‘proof’ of Uniq is left to the reader. For Fusion we argue (suppressing A and a ):

([b]) ; x = ([c])

≡ Charn[ b, x := c, ([b]) ; x ]

([b]) ; x: a→ c

⇐ composition

([b]): a→ b ∧ x: b→ c

≡ Self, and premise

true.

These five laws become much more interesting in case category A is built upon another one,
and →A is expressed as one or more equations in the underlying category. In particular
the importance of law Fusion cannot be over-emphasised; we shall use it quite often. If
the statement x: b →A c boils down to the equation c = b ; x (which is the case when
A =

∨
(a) ), law Fusion can be formulated as an unconditional equation (by substituting

c := b ; x in the consequent, giving ([b]) ; x = ([b ; x]) ). In the case of initial algebras
Uniq captures the pattern of proofs by induction that two functions x and y are equal;
in several other cases Uniq asserts that a collection of morphisms is jointly epic.

10 Well-formedness condition. In general, when A is built upon another category,
C say, the well-formedness condition for the notation ([b]) is that b (viewed as a composite
entity in the underlying category C ) is an object in A ; this is not a purely syntactic
condition.

b in A ⇒ ([a → b])A is a morphism in C Type

In the sequel we adhere to the (dangerous?) convention that in each law the free variables
are quantified in such a way that the well-formedness condition, the premise of Type, is
met.

11 Application. Here is a first example of the use of these laws: proving that an initial
object is unique up to a unique isomorphism. Suppose that both a and b are initial. We
claim that ([a → b]) and ([b → a]) establish the isomorphism and are unique in doing so. By
Type and Self they have the correct typing. We shall show

x = ([a → b]) ∧ y = ([b → a]) ≡ x ; y = id a ∧ y ; x = id b ,

that is, both compositions of ([a → b]) and ([b → a]) are the identity, and conversely the
identities can be factored only in this way. We prove both implications of the equivalence
at once.

x = ([a → b]) ∧ y = ([b → a])

≡ Charn
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x: a→ b ∧ y: b→ a

≡ composition

x ; y: a→ a ∧ y ; x: b→ b

≡ Charn

x ; y = ([a → a]) ∧ y ; x = ([b → b])

≡ Id

x ; y = ida ∧ y ; x = id b.

The equality ([a → b]) ; ([b → a]) = ida can be proved alternatively using Id, Fusion, and
Self in that order. (This gives a nice proof of the weaker claim that initial objects are
isomorphic.)

2c Products and Sums

Products and sums are categorical concepts that, specialised to category Set , yield the
well-known notions of cartesian product and disjoint union. (In other categories products
and sums may get a different interpretation.)

12 Disjoint union. As an introduction to the definition of the categorical sum, we
present here a categorical description of the disjoint union. Let C be Set . The disjoint
union of sets a and b is a set a+ b with several operations associated with it. There are
the injections

inl : a→ a + b
inr : b→ a + b ,

and there may be a predicate that tests whether an element in a + b is inl(x) or inr(y)
for some x ∈ a or some y ∈ b . Using the predicate one can define an operation that in
programming languages is known as a case construct, and vice versa. The case construct
of f and g is denoted f ∇ g and has the following typing and semantics.

f ∇ g: a+ b→ c for f : a→ c and g: b→ c
and

x ; inl ; f ∇ g = x ; f for each x: 1 → a
y ; inr ; f ∇ g = y ; g for each y: 1 → b .

Here we have used “nullary” functions x from the one-point set to a to indicate an element
in the set a . By extensionality the two equations read

inl ; f ∇ g = f and inr ; f ∇ g = g .

Moreover, f ∇ g is the only solution for x in

inl ; x = f and inr ; x = g .
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This is an important observation; it holds for each representation of disjoint union! Indeed,
a ‘disjoint union’-like concept for which the claim does not hold, is normally not considered
to be a proper ‘disjoint union’ of a and b . In summary, we call inl : a→ d and inr : b→ d
together with their target d a disjoint union of a and b if and only if for each f : a→ c
and g: b→ c there is precisely one function, henceforth denoted f ∇ g , such that

inl ; x = f ∧ inr ; x = g ≡ x = f ∇ g .

This is an entirely categorical formulation. In addition, the form of the equivalence suggests
to look for a characterisation by means of initiality (or finality). The entities inl and inr
have a common target and have a and b as source respectively. Thus together they form
an object in the category

∨
(a, b) , and, indeed, the x and f ∇ g in the equivalence above

are morphisms in this category.

This completes the introduction to the definition below. Since there are categories in
which the objects are not sets, the categorical construct is called sum rather than disjoint
union.

13 Sum. Let C be arbitrary, the default category, and let a, b be objects. A sum of
a and b is: an initial object in

∨
(a, b) ; it may or may not exist. Let inl , inr be a sum

of a and b ; their common target is denoted a + b . We abbreviate ([inl , inr → f, g])∨(a,b)

to just f ∇ g , not mentioning the dependency on a, b and inl , inr . (The usual categorical
notation for f ∇ g is [f, g] .)

f : a→ c ∧ g: b→ c ⇒ f ∇ g: a+ b→ c ∇-Type

Working out →∨(a,b) in terms of equations in C , morphisms inl , inr and operation ∇ are

determined (“up to isomorphism”) by law Charn, and consequently also satisfy the other
laws.

inl ; x = f ∧ inr ; x = g ≡ x = f ∇ g ∇-Charn

inl ; f ∇ g = f ∧ inr ; f ∇ g = g ∇-Self

inl ∇ inr = id ∇-Id

inl ; x = inl ; y ∧ inr ; x = inr ; y ⇒ x = y (“jointly epic”) ∇-Uniq

f ; x = h ∧ g ; x = j ⇒ f ∇ g ; x = h ∇ j ∇-Fusion

Law Fusion may be simplified to an unconditional law by substituting h, j := f ; x, g ; x ,

f ∇ g ; x = (f ; x) ∇ (g ; x) ∇-Fusion

Similar simplifications will be done tacitly in the sequel. Notice that for given f : a+b→ c
the equation x ∇ y = f defines x and y , since the equation equivales by ∇ -Charn the
two equations x = inl ; f and y = inr ; f . We shall quite often use this form of definition.
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14 Products. Products are, by definition, dual to sums. Let exl , exr be a product
of a and b , supposing one exists; its common source is denoted a × b . We abbreviate
db(f, g → exl , exr)ec∧(a,b) to just f ∆ g . (The usual categorical notation is 〈f, g〉 ).

f : c→ a ∧ g: c→ b ⇒ f ∆ g: c→ a× b ∆-Type

The laws for exl , exr and ∆ work out as follows:

x ; exl = f ∧ x ; exr = g ≡ x = f ∆ g ∆-Charn

f ∆ g ; exl = f ∧ f ∆ g ; exr = g ∆-Self

exl ∆ exr = id ∆-Id

x ; exl = y ; exl ∧ x ; exr = y ; exr ⇒ x = y (“jointly monic”) ∆-Uniq

x ; f ∆ g = (x ; f) ∆ (x ; g) ∆-Fusion

15 Application. As a first application we show that inl a,a is monic (and by symmetry
inra,a too, and dually each of exla,a and exr a,a is epic):

x = y

≡ aiming at “ ; inl ” after x and y , use ∇-Self[ f := id ]

x ; inl ; id ∇ g = y ; inl ; id ∇ g

⇐ Leibniz

x ; inl = y ; inl

as desired. The choice for g is immaterial; id a certainly does the job.
As a second application we show that ∇ and ∆ abide. Two binary operations |© and

	 abide with each other if: for all values a, b, c, d

(a |© b)	 (c |© d) = (a	 c) |© (b	 d) .

Writing a |© b as a | b and a	 b as a
b

, the equation reads

a | b
c | d =

a

c
| b
d

.

The term abide has been coined by Bird [10] and comes from “above-beside.” In category
theory this property is called the ‘middle exchange rule.’

(f ∇ g) ∆ (h ∇ j) = (f ∆ h) ∇ (g ∆ j)

≡ ∇ -Charn [x, f, g := lhs, f ∆ h, g ∆ j]

inl ; (f ∇ g) ∆ (h ∇ j) = f ∆ h ∧ inr ; (f ∇ g) ∆ (h ∇ j) = g ∆ j

≡ ∆ -Fusion (at two places)

(inl ; f ∇ g) ∆ (inl ; h ∇ j) = f ∆ h ∧ (inr ; f ∇ g) ∆ (inr ; h ∇ j) = g ∆ j

≡ ∇ -Self (at four places)
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f ∆ h = f ∆ h ∧ g ∆ j = g ∆ j

≡ equality

true.

16 More laws for product and sum. For later use we define, for f : a → b and
g: c→ d ,

f + g = (f ; inl) ∇ (g ; inr) : a + c → b + d
f × g = (exl ; f) ∆ (exr ; g) : a× c → b× d .

These + and × are bifunctors: id + id = id and f + g ; h + j = (f ; h) + (g ; j) , and
similarly for × . Throughout the text we shall use several properties of product and sum.
These are referred to by the hint ‘product’ or ‘sum’. Here is a list.

f × g ; exl = exl ; f inl ; f + g = f ; inl
f ∆ g ; exl = f inl ; f ∇ g = f
f × g ; exr = exr ; g inr ; f + g = g ; inr
f ∆ g ; exr = g inr ; f ∇ g = g
f ; g ∆ h = (f ; g) ∆ (f ; h) f ∇ g ; h = (f ; h) ∇ (g ; h)
exl ∆ exr = id inl ∇ inr = id

(h ; exl) ∆ (h ; exr) = h (inl ; h) ∇ (inr ; h) = h
f ∆ g ; h× j = (f ; h) ∆ (g ; j) f + g ; h ∇ j = (f ; h) ∇ (g ; j)
f × g ; h× j = (f ; h)× (g ; j) f + g ; h+ j = (f ; h) + (g ; j)
f ∆ g = h ∆ j ≡ f = h ∧ g = j f ∇ g = h ∇ j ≡ f = h ∧ g = j

Some of these are just the laws presented before.

2d Coequalisers and Kernel pairs

The equivalence relation induced by a given relation is an important concept in mathe-
matics. Related to this is the lesser known concept of kernel pair. Both will be used in the
construction of the congruence relation induced by a given relation, in Section 2f. Let us
therefore present the algebraic properties of these concepts; they are categorically known
as coequaliser and kernel pair.

17 Induced equivalence — coequaliser. Let C be Set , the default category, and
fix for the following discussion an object a and a parallel pair (f, g) with a as common
source. The pair (f, g) is (or represents) a relation on a , namely the one that contains
all pairs (fx, gx) . We shall now describe the equivalence relation induced by (f, g) .

Each function p with source a is (or represents) an equivalence on a , namely the one
that contains all pairs (y, z) for which py = pz . An equivalence p on a is called proper
if: p is a surjective function. Properness of p means that the target of p is precisely the
set of equivalence classes (and does not contain unreachable junk).
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Observe that for an equivalence p

p includes the relation (f, g)

≡ representation above, set theory

f ; p = g ; p

≡ definition
∨

(f‖g)

p is an object in
∨

(f‖g).

And, for equivalences p, q

p is included in q

≡ representation of equivalences, set theory

p ; x = q for some function x: tgtp→ tgtq

≡ definition
∨

(f‖g)

x: p→ q in
∨

(f‖g) for some x.

The equivalence on a induced by (f, g) is: a least, proper, equivalence including relation
(f, g) ; least meaning being included in each equivalence that also includes (f, g) . For an
explicit expression of this notion in Set , let

Rf,g = {(fx, gx)| x ∈ srcf(= src g)}
P =

⋃
n :: (Rf,g ∪Rf,g∪)

n

where for normal relations S and T on a

S ; T = the usual composition of S and T
Sn = the usual n -fold composition of S
S ∪ T = the usual union of S and T
S∪ = the usual reverse of S

and
a/∼= = the usual set of ∼= -equivalence classes of a .

Then the equivalence p induced by (f, g) is the function

p : a→ a/P
p(x) = the P -equivalence class in a/P of x .
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Alternatively, the induced equivalence can be expressed by initiality as follows. Let p
be the equivalence induced by (f, g) , and let u be such that u ; p = id which exists since
p is surjective. Let q be an arbitrary equivalence on a that also includes relation (f, g) .
Then, the initiality statement

x: p→ q in
∨

(f‖g) ≡ x = some expression not involving x

is established as follows.

x: p→ q in
∨

(f‖g)

≡ definition
∨

(f‖g)

p ; x = q

≡ below: q = p ; u ; q(∗)
p ; x = p ; u ; q

≡ surjectivity p

x = u ; q.

For step (∗) we argue by extensionality. For each x: 1 → a (an element in a considered
as a nullary function)

x ; q = x ; p ; u ; q

⇐ equivalence q includes relation (f, g)

x ∆ (x ; p ; u) ∈ (Rf,g ∪Rf,g∪)
n for some n

= above observation p ≈ P =
⋃
n :: (Rf,g ∪ Rf,g∪)

n

x ; p = x ; p ; u ; p

= property u ; p = id

true.

Thus p is initial in
∨

(f‖g) .
Abstracting from Set and the application here, the initial object in

∨
(f‖g) is called

coequaliser since in categories different from Set the terminology of relation, equivalence,
and inclusion may not be appropriate. We shall present the properties of coequalisers in a
way suitable for algebraic calculation.

18 Laws for coequalisers. Let C be arbitrary, the default category, and let (f, g)
be a parallel pair. A coequaliser of (f, g) is: an initial object in

∨
(f‖g) . Let p be

a coequaliser of (f, g) , supposing one exists. We write p\f,gq or simply p\q instead of
([p → q])∨(f‖g) since, as we shall explain, the division notation better suggests the calcula-

tional properties.

f ; q = g ; q ⇒ p\q: tgt p→ tgt q \-Type

Then the laws for p and \ work out as follows.

p ; x = q ≡ x = p\q \-Charn
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p ; p\q = q \-Self

id = p\p \-Id
p ; x = q ∧ p ; y = q ⇒ x = y \-Uniq
p ; x = p ; y ⇒ x = yi.e., ( p epic)

q ; x = r ⇒ p\q ; x = p\r \-Fusion
p\q ; x = p\(q ; x)i.e.,

In accordance with the convention explained in paragraph 10 we have omitted in laws
\-Charn, \-Self and \-Fusion the well-formedness condition that q is an object in∨

(f‖g) ; the notation ...\q is only senseful if f ; q = g ; q , like in arithmetic where the
notation m/n is only senseful if n differs from 0 . Notice also how \-Fusion simplifies
to an unconditional fusion law. Similarly law \-Uniq simplifies to the assertion that each
coequaliser is epic.

Now that we have presented the laws the choice of notation may be evident: the usual
manipulation of cancelling adjacent factors in the denominator and nominator is valid
when composition is interpreted as multiplication and \ is interpreted as a fraction. (See
also law \-Compose below.) This may also help you to remember that there is only
“post-fusion” here; the equation x ; p\q = (x ; p)\q is not meaningful and not valid in
general.

19 Additional laws. The following law confirms the choice of notation once more.

p\q ; q\r = p\r \-Compose

Here is one way to prove it.

p\q ; q\r
= \-Fusion

p\(q ; q\r)
= \-Self

p\r.

An interesting aspect is that the omitted subscripts to \ may differ: e.g., p\f,gq and
q\h,jr , and q is not necessarily a coequaliser of f, g . Rephrased in the standard notation,
law \-Compose reads:

([a → b])A ; ([b → c])B = ([a → c])A Compose

where A and B are full subcategories of some category C and objects b, c are in both
A and B ; in our case A =

∨
(f‖g) , B =

∨
(h‖j) , and C =

∨
(d) where d is the common

target of f, g, h, j . Then the proof runs as follows.

([a → b])A ; ([b → c])B = ([a → c])A
⇐ Fusion
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([b → c])B: b→A c
≡ both A and B are full subcategories of C ,

each containing both b and c

([b → c])B: b→B c
≡ Self

true.

Another law that we shall use below has to do with functors. As before, let p be a
coequaliser. Then

F (p\q) = Fp\Fq \-Fctr

The implicit well-formedness condition here is that Fp is a coequaliser. Clearly, this
condition is valid when F preserves coequalisers. The proof of the law reads:

F (p\q) = Fp\Fq
≡ \-Charn

Fp ; F (p\q) = Fq

≡ functor

F (p ; p\q) = Fq

≡ \-Self

true.

20 Induced relation — kernel pair. Above we have dealt with a categorical de-
scription of the equivalence p on a induced by a given relation (f, g) : the coequaliser of
(f, g) . Now we consider inducing in the opposite direction. A relation (f, g) on a is called
proper if: both function f and function g are injective. Let a set a and an equivalence
p on a be fixed for this discussion.

--
f, g

HHHHHHj

HHHHHHj

d, e

a -p?
x

Observe that for a relation (d, e) on a

(d, e) is included in p

≡ representation of relations and equivalences, set theory
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d ; p = e ; p

≡ definition
∧

(p p) below(∗)
(d, e) in

∧
(p p).

And, for relations on a ,

(d, e) is included in (f, g)

≡ representation of relations, set theory

d = x ; f ∧ e = x ; g for some x: src(d, e)→ src(f, g)

≡ definition
∧

(p p) below(∗)
x: (d, e)→ (f, g) in

∧
(p p) for some x.

Before defining the induced relation, let us first define category
∧

(p p) used above in
steps (∗) . This category is designed in such a way that the steps become valid; so it
is built upon C as follows. An object in

∧
(p p) is: a pair (f, g) of morphisms in C

satisfying f ; p = g ; p (it follows that f, g is a parallel pair with a as common target).
A morphism from (d, e) to (f, g) in

∧
(p p) is: a morphism x in C satisfying d = x ; f

and e = x ; g .
Now, the relation on a induced by p is: a greatest, proper, relation on a included

in p ; greatest meaning including each relation that is included in p . This is a lesser
known concept in daily set theory, since in set theory a relation is rarely represented as
a pair (f, g) of functions, and moreover the relation induced by p represents the very
same relation as p . In Set the relation induced by p is (exl , exr) with common source
{(x, y)| p(x) = p(y)} .

Alternatively, the relation induced by p can be expressed by finality as follows. Let
(f, g) be the relation induced by p , and let (d, e) be an arbitrary relation including p .
Then the finality statement

x: (d, e)→ (f, g) in
∧

(p p) ≡ x = some expression not involving x

is readily established.

x: (d, e)→ (f, g) in
∧

(p p)

≡ definition
∧

(p p)

d = x ; f ∧ e = x ; g

≡ definition (f, g) , observation above

d = x ; exl ∧ e = x ; exr

≡ (cartesian) product

x = d ∆ e.

Thus (f, g) is final in
∧

(p p) .
Abstracting from Set and the application here, the final object in

∧
(p p) is called

the kernel pair for p .
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21 Laws for kernel pairs. Let C be arbitrary, the default category, and let p be a
morphism. A kernel pair of p is: a final object in

∧
(p p) . Let (f, g) be a kernel pair of

p , supposing one exists. This time we use the notation (d, e)/p(f, g) or simply (d, e)/(f, g)
instead of db(d, e → f, g)ec∧(p p) .

d ; p = e ; p ⇒ (d, e)/(f, g): src d→ src f = src e→ src g /-Type

Then the laws for (f, g) and / work out as follows.

d = x ; f ∧ e = x ; g ≡ x = (d, e)/(f, g) /-Charn

d = (d, e)/(f, g) ; f ∧ e = (d, e)/(f, g) ; g /-Self

id = (f, g)/(f, g) /-Id

d = x ; f ∧ e = x ; g
d = y ; f ∧ e = y ; g

}
⇒ x = y /-Uniq

x ; f = y ; f ∧ x ; g = y ; g ⇒ x = yi.e., (jointly monic)

x ; (d, e)/(f, g) = (x ; d, x ; e)/(f, g) /-Fusion

(d, e)/(f, g) ; (f, g)/(h, j) = (d, e)/(h, j) /-Compose

F ((d, e)/(f, g)) = F (d, e)/F (f, g) /-Fctr

Notice that there is “pre-fusion” only. Due to the presence of so many pairs the notation
is a bit cumbersome, but we refrain from simplifying it here. (We do so in paragraph 35.)

22 Application. As an example of the use of the laws we prove that the coequaliser
and kernel pair form an adjunction. More precisely, let C denote a mapping that sends
each parallel pair with common target a to some coequaliser of it, and similarly let K
send each morphism with source a to some kernel pair of it:

C(f, g) = ‘the’ coequaliser of f, g for (f, g) in
∧

(a, a)
Kp = ‘the’ kernel pair of p for p in

∨
(a) .

We shall extend them to functorsC:
∧

(a, a) → ∨
(a) and K:

∨
(a) → ∧

(a, a) , and then
prove that they form an adjunction.

To define Cx for a morphism x in
∧

(a, a) we make an obvious choice.

Cx = C(d, e)\C(f, g) for x: (d, e)→ (f, g) in
∧

(a, a) .(a)

It remains to prove that C is a functor. Since in general p\q: p → q (in the appropri-
ate category, see \ -Type), it is immediate that Cx above has the right type, namely
C(d, e) → C(f, g) in

∨
(a) . The two functor axioms Cid = id and C(x ; y) = Cx ; Cy

follow immediately by \ -Id and \ -Compose.
To define Ku for a morphism u in

∨
(a) we make an obvious choice too.

Ku = Kp/Kq for u: p→ q in
∨

(a) .(b)

Thus extended, K is a functor by a similar argument as above.
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To prove that C is adjoint to K we establish natural transformations ε: CK .→I and
η: I .→KC such that ηK ; Kε = idK and Cη ; εC = idC . Take

εq = CKq\q : CKq →∨(a) q for all q in
∨

(a) .

The naturality of ε is shown as follows. For arbitrary u: p→∨(a) q ,

CKu ; εq

= definition C, K and ε , noting that u: p→∨(a) q

CKp\CKq ; CKq\q
= \-Compose

CKp\q
= equation “u: p→∨(a) q ”

CKp\(p ; u)

= \-Fusion

CKp\p ; u

= definition ε and I

εp ; Iu

as desired. Further we take

η(d, e) = (d, e)/KC(d, e) : (d, e)→∧(a,a) KC(d, e) .

We omit the proof that η is natural; this is quite similar (but not categorically dual) to
the naturality of ε . Next we show that ηK ; Kε = idK . Let q be arbitrary, then

(ηK ; Kε)q

= composition of natural transformations, and definitions of η , ε

Kq/KCKq ; K(CKq\q)
= definition K (see (b) above with u, p, q := q\CKq, q, CKq ,

noting that u: p→ q follows from \ -Self)

K(q\CKq) ; K(CKq\q)
= functor, \-Compose

K(q\q)
= \-Id, noting that id q in

∨
(a) is id tgtq in C

K(id q)

= functor

idKq.

The proof of Cη ; εC = idC is again quite similar to the above one.
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2e Colimits

An initial object is a colimit of the empty diagram, and conversely, a colimit of a diagram
is an initial object in the category of cocones over that diagram. Let us use the latter
approach to present the algebraic properties of colimits.

23 A first description. A diagram in category C is: a directed graph D whose edges
are labelled with morphisms of C in a way that is consistent with the typing in C , that
is, f is followed by g in D only if f ; g makes sense. Category

∨
D , built upon C , is

defined as follows. An object in
∨
D , called cocone for D , is: an object c together with

a collection γ of morphisms γa: a → c (one for each node a in D ), satisfying for each
edge f : a→ b in diagram D :

γa = f ; γb “commutativity of the triangle” .

Object c is called the target of γ . Let γ and δ be cocones for D ; then a morphism from
γ to δ in

∨
D is: a morphism x in C satisfying

∀(a in D :: γa ; x = δa) .

A colimit for D in C is: an initial object in
∨
D . Let γ be a colimit for D , supposing

it exists. We write γ\Dδ or simply γ\δ , instead of ([γ → δ])∨D .

∀(a in D :: γa ; x = δa) ⇒ γ\δ: tgt γ → tgt δ \-Type

Then the laws for γ and \ work out as follows ( a ranges over the nodes of D ).

∀(a :: γa ; x = δa) ≡ x = γ\δ \-Charn

∀(a :: γa ; γ\δ = δa) \-Self

id = γ\γ \-Id
∀(a :: γa ; x = γa ; y) ⇒ x = y ( γ jointly epic) \-Uniq

γ\δ ; x = γ\{a :: δa ; x} \-Fusion

γ\δ ; δ\ε = γ\ε \-Compose

F (γ\δ) = Fγ\Fδ \-Fctr

for each D -cocone δ, ε (where, as usual, δ and Fγ are assumed to be colimits when they
occur as the left argument of \ ).

24 Improved description. In view of the explicit quantifications the above laws for
colimits are not very well suited for algebraic calculation, and that is what we are after. A
lot of explicit quantifications are eliminated by treating a cocone as a family of functions,
and defining for example γ ; x = δ to mean ∀(a :: γa ; x = δa) . It turns out that this
can be formulated categorically by using natural transformations, which are families of
morphisms indeed. Several (not all) manipulations on the subscripts can then be phrased
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as well-known manipulations with natural transformations as a whole. So let us redesign
the definitions. (I got the suggestion from Jaap van der Woude; Mac Lane [41] and Lambek
and Scott [37] and several others use the following formulation too.)

As regards the property of being a cocone we can say without loss of generality that a
directed graph is a category D : take all finite pathes of the edges as morphisms. (Con-
versely, each category D determines a graph by taking all morphisms as edges, and forget-
ting which morphisms are composites and which are identities.) A labelling of the edges
with morphisms from C is then a functor D: D → C . This leads to the following defini-
tions. A diagram in C is: a functor D: D → C , for some category D , called the shape
of the diagram. Category

∨
D is built upon C as follows. An object in it, again called

cocone for D , is: a natural transformation γ: D .→ c for some object c in C ( c is the
constant functor determined by c ). Let γ and δ be cocones for D ; then a morphism
from γ to δ in

∨
D is: a morphism x in C satisfying γ ; x = δ (the composition is a

slight adaptation of the one in C ; see paragraph 25 below). Again, a colimit for D is: an
initial object in

∨
D .

The required “commutativity of the triangles” follows from the naturality: for each
Df : Da→ Db in the ‘diagram’ DD in C

γa ; cf = Df ; γb : Da→ ca that is,
γa = Df ; γb : Da→ c .

25 Defns for ntrfs. For natural transformations in general, hence for cocones in par-
ticular, the following definitions are standard. For γ: D .→ c and δ: D .→ d :

• for each x: c→ d ,
γ ; x = λ(a :: γa ; x): D .→ d is a cocone for D again.

• for each functor F : C → C ,
Fγ = λ(a :: F (γa)): FD .→ Fc is a cocone for FD (note that Fc = Fc ).
If in addition F preserves colimits, then Fγ is a colimit for FD if γ is so for D .
Since by definition (Fγ)a = F (γa) we omit the parentheses.

• for each functor S: D → D ,
γS = λ(a :: γ(Sa)): DS .→ c is a cocone for DS (note that cS = c ).
If S transforms the shape, γS is the transformed cocone.
Since by definition γ(Sa) = (γS)a we omit the parentheses.

26 The laws. Let γ be a colimit for D . Then the laws for γ and \ work out as
follows.

δ: D .→ d ⇒ γ\δ: tgt γ → d \-Type
and

γ ; x = δ ≡ x = γ\δ \-Charn

γ ; γ\δ = δ \-Self
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γ\γ = id \-Id
γ ; x = γ ; y ⇒ x = y ( γ jointly epic) \-Uniq

γ\δ ; x = γ\(δ ; x) \-Fusion

γ\δ ; δ\ε = γ\ε \-Compose

F (γ\δ) = Fγ\Fδ \-Fctr

for each D -cocone δ, ε ( δ and Fγ being a colimit when occurring as the left argument
of \ .) Notice also that, by definition of γS and \ -Self,

γS ; γ\δ = (γ ; γ\δ)S = δS .

If γS is a colimit, then γS\δS is well-formed and the equality γ\δ = γS\δS follows by
\ -Charn from the equation.

27 Application. We present the well-known construction of an initial F -algebra. You
may skip this application without loss of continuity. Our interest is solely in the algebraic,
calculational style of various subproofs. The notion of F -algebra has been defined in
paragraph 7 without any explanation. So you may postpone reading this application until
you’ve read Chapter 3 and know what algebras are good for. The construction will require
that C has an initial object and a colimit for each ω -chain, and that functor F preserves
colimits of ω -chains; briefly: C is an ω -category and F is ω -cocontinuous.

Given endofunctor F we wish to construct an F -algebra, α: Fa → a say, that is
initial in Alg(F ) . Anticipating the rather easily proven fact that an initial F -algebra
α: Fa→ a is an isomorphism α: Fa ∼= a (see paragraph 3.31), we derive a construction
of an α: Fa→ a as follows. (Read the steps and their explanation below in parallel!)

α: Fa→ a

⇐ definition isomorphism(a)

α: Fa ' a

⇐ definition cocone morphism (taking a = tgtγ = tgtγS )(b)

α: Fγ ' γS in
∨

(FD) ∧ FD = DS

≡ Fγ is colimit for FD (taking α = Fγ\γS )(c)

γS is colimit for DS ∧ FD = DS.

Step (a): this is motivated by the wish that α be initial in Alg(F ) , and so α will be an
isomorphism; in other words, in view of the required initiality the step is no strengthening.
Step (b): here we merely decide that α, a come from a (co)limit construction; this is true
for many categorical constructions. So we aim at α: Fγ ∼= ... , where γ is ‘the’ colimit
(which we assume to exist) for a diagram D yet to be defined. Since Fγ is a FD -cocone,
there has to be another FD -cocone on the dots. To keep things simple, we aim at an
FD -cocone constructed from γ , say γS , where S is an endofuctor on srcD . Since γS is
evidently a DS -cocone, and must be an FD -cocone, it follows that FD = DS is another
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requirement.
Step (c): the hint ‘Fγ is colimit for FD ’ follows from the assumption that F preserves
colimits, and the definition α = Fγ\γS is forced by (the proof of) the uniqueness of
initial objects. (It is indeed very easy to verify that Fγ\γS and γS\Fγ are each other’s
inverse.)
We shall now complete the construction in the following three parts.

1. Construction of D,S such that FD = DS .

2. Proof of ‘ γS is colimit for DS ’ where γ is a colimit for D .

3. Proof of ‘α is initial in Alg(F ) ’ where α = Fγ\γS .

28 Part 1. (Construction of D,S such that FD = DS .) The requirement FD = DS
says that FD is a ‘subdiagram’ of D . This is easily achieved by making D a chain of
iterated F applications, as follows.

Let ω be the category with objects 0, 1, 2, . . . and a unique arrow from i to j (denoted
i≤j ) for every i ≤ j . So ω is the shape of a chain. The zero and successor functors
0 , S: ω → ω are defined by 0 (i≤j) = 0≤0 and S(i≤j) = (i+1)≤(j+1) .

Let 0 be an initial object in C . Define the diagram D: ω → C by D(i≤j) = F i([F j−i0 ]) ,
where ([ ]) abbreviates ([0 → ])C . It is quite easy to show that D is a functor, that is,
D(i≤j ; j≤k) = D(i≤j) ; D(j≤k) . It is also immediate that FD = DS , since

FD(i≤j) = FF i([F j−i0 ]) = F i+1([F (j+1)−(i+1)0 ]) = D((i+1)≤(j+1)) = DS(i≤j).

Thanks to the particular form of ω , natural transformations of the form ε: D .→G (some
G ) can be defined by induction, that is, by defining

ε0 : D0 .→G0 or, equivalently ε0: D0→ G0
εS : DS .→GS .

We shall use this form of definition in Part 2 and Part 3 below.

29 Part 2. (Proof of ‘ γS is colimit for DS ’ where γ is a colimit for D .) Our task is
to construct for arbitrary cocone δ: DS .→ d a morphism ([γS → δ])∨(DS) such that

γS ; x = δ ≡ x = ([γS → δ])∨(DS) .(♠)

Our guess is that γ\ε may be chosen for ([γS → δ])∨(DS) for some suitably chosen ε: D .→d

that depends on δ . This guess is sufficient to start the proof of (♠) ; we shall derive a
definition of ε (more specifically, for ε0 and εS ) along the way.

x = γ\ε
≡ \-Charn
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γ ; x = ε

≡ observation at the end of Part 1

(γ ; x)0 = ε0 ∧ (γ ; x)S = εS

≡ ‘standard definition’ for natural transformations (see paragraph 25)

γ0 ; x = ε0 ∧ γS ; x = εS

≡ { aiming at the left hand side of (♠) }
define εS = δ (noting that δ: DS .→ d = DS .→ dS )

γ0 ; x = ε0 ∧ γS ; x = δ

≡ define ε0 below such that γS ; x = δ ⇒ γ0 ; x = ε0 for all x(∗)
γS ; x = δ.

In order to define ε0 satisfying the requirement derived at step (∗) , we calculate

γ0 ; x

= { anticipating next steps, introduce an identity }
γ0 ; c(0≤1) ; x

= naturality γ (“commutativity of the triangle”)

D(0≤1) ; γ1 ; x

= using γS ; x = δ

D(0≤1) ; δ0

so that we can fulfill the requirement γ0 ; x = ε0 by defining ε0 = D(0≤1) ; δ0 .

30 Part 3. (Proof of ‘α is initial in Alg(F ) ’ where α = Fγ\γS .) Put a = tgtα = tgtγ
(as we did in the main steps (a), (b), (c) at the start). Let ϕ: Fb → b be arbitrary. We
have to construct a morphism ([α → ϕ])F : a→ b in C such that

Fγ\γS ; x = Fx ; ϕ ≡ x = ([α → ϕ])F .(♣)

Our guess is that the required morphism ([α → ϕ])F can be writt en as γ\δ for some
suitably chosen D -cocone δ . This guess is sufficient to start the proof of (♣) , deriving a
definition for δ (more specifically, for δ0 and δS ) along the way.

Fγ\γS ; x = Fx ; ϕ

≡ \ -Fusion

Fγ\(γS ; x) = Fx ; ϕ

≡ \ -Charn[ γ, δ, x := Fγ, γS ; x, Fx ; ϕ ]

Fγ ; Fx ; ϕ = γS ; x

≡ lhs: functor, rhs: ‘standard definition’ for ntrf (see paragraph 25)

F (γ ; x) ; ϕ = (γ ; x)S

≡ explained and proved below (defining δ )(∗)
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γ ; x = δ

≡ \ -Charn

x = γ\δ.

Arriving at the line above (∗) I see no way to make progress except to work bottom-up
from the last line. Having the lines above and below (∗) available, we define δSn in terms
of δn by

δS = Fδ ; ϕ ,

a definition that is also suggested by type considerations alone. Now part ⇐ of equivalence
(∗) is immediate:

F (γ ; x) ; ϕ = (γ ; x)S

⇐ definition δS : Fδ ; ϕ = δS

γ ; x = δ.

For part ⇒ of equivalence (∗) we argue as follows, assuming the line above (∗) as a
premise, and defining δ0 along the way.

γ ; x = δ

≡ induction principle

(γ ; x)0 = δ0 ∧ ∀(n :: (γ ; x)n = δn ⇒ (γ ; x)Sn = δSn)

≡ proved below: the ‘induction base’ in (i), and the ‘induction step’ in (ii)

true.

For (i), the induction base, we calculate

γ0 ; x

= Charn, using γ0: 0 → c

([a])C ; x

= Fusion, using x: a→ b

([b])C
= define δ0 = ([b])C

true.

And for (ii), the induction step, we calculate for arbitrary n , using the induction hypothesis
(γ ; x)n = δn ,

(γ ; x)Sn

= line above (∗)
(F (γ ; x) ; ϕ)n

= hypothesis (γ ; x)n = δn
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(Fδ ; ϕ)n

= definition δS

(δS)n

as desired. This completes the entire construction and proof.

2f Induced congruence categorically

This section may be skipped without loss of continuity; the remainder of the text is in-
dependent of the notions and theorems presented here. We include it mainly to illustrate
once more an algebraic calculational approach to category theory, in particular in a case
where pushouts are involved. I wouldn’t dare to claim that the approach presented here is
the best one when dealing with pushouts. I consider it rather a case study. Although you
should be able to follow the calculations step by step, you will probably not understand
what is going on if you are not familiar with the notions of pushout and colimit.

We start with a categorical description of two different notions of induced congruence,
then we introduce a notation that facilitates an algebraic calculation with pushouts, and
finally we give a construction of one of the induced congruences and its correctness proof.
The notions and notations of the preceding sections are used throughout.

31 Induced congruence categorically. Let functor F , F -algebra ϕ: Fa → a ,
and object (f, g) in

∧
(a, a) be given, and fixed throughout the following. Recall from

Section 2d the notion of equivalence.
Aiming at a formulation in Alg(F ) the following definition suggests itself. An alg-

congruence for ϕ is: an F -homomorphism from ϕ to another F -algebra, that is, an
object in

∨
F (ϕ) (where

∨
F abbreviates

∨
Alg(F ) ). The alg-congruence for ϕ induced

by (f, g) is: an initial object in
∨
F (ϕ) ∩ ∨(f‖g) . (The intersection makes sense since

both categories are subcategories of another one, namely
∨

(a) .) Notice the close analogy
with the equivalence on a induced by (f, g) (the coequaliser), which is an initial object in∨

(a)∩∨(f‖g) . The analogy may be exploited in generalising a construction of coequaliser
to a construction of the induced alg-congruence. This has been done by Lehmann [39].

However, the underlying category C , and not Alg(F ) , is the universe of discourse.
The morphisms of C are —for us— all the algorithms that exist, and only some of these
are in Alg(F ) too. So, here is my self-made definition directly in terms of C . A base-
congruence for ϕ is: an object in Congr(ϕ) . Category Congr(ϕ) is the full subcategory
of
∨

(a) containing those equivalences p on a that satisfy

x ; Fp = y ; Fp ⇒ x ; ϕ ; p = y ; ϕ ; p32

for all x, y . That is, ‘componentwise’ equivalent arguments x, y are mapped by ϕ to
equivalent results. The base-congruence for ϕ induced by (f, g) is: an initial object in
Congr(ϕ) ∩ ∨(f‖g) . For later use we rephrase this as follows. Morphism p is the base-
congruence for ϕ induced by (f, g) iff it is in Congr(ϕ)∩ ∨(f‖g) , and for each q in that
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category there exists a morphism, which we shall denote p\q , such that

x: p→∨(a) q (meaning p ; x = q) ≡ x = p\q33 congruence-Charn

Here is a relationship between the two notions of congruences. As regards clause (b) of the
lemma, notice that in Set an u satisfying p ; u ; p = id exists for every p (by the axiom
of choice: define u(y) to be some x for which p(x) = y if such an x exists, and arbitrary
otherwise.)

34 Lemma.
(a) p is alg-congruence for ϕ ⇒ p is base-congruence for ϕ .
(b) the converse of (a) is true if there exists an u for which p ; u ; p = id .

Proof. (a) Let x, y be arbitrary. Then the defining implication 32 is established by:

x ; ϕ ; p = y ; ϕ ; p

≡ p is a homomorphism from ϕ , say p: ϕ→F ψ

x ; Fp ; ψ = y ; Fp ; ψ

⇐ Leibniz

x ; Fp = y ; Fp

as desired.
(b) Let u be such that p ; u ; p = id . We show that p is a homomorphism from ϕ to
another algebra ψ that is yet to be constructed.

p: ϕ→F ψ

≡ definition →F

ϕ ; p = Fp ; ψ

≡ aiming at the hint of the next step, define ψ = χ ; ϕ ; p

ϕ ; p = Fp ; χ ; ϕ ; p

⇐ p is base-congruence for ϕ (taking x, y := id , (Fp ; χ) in formula 32)

id ; Fp = Fp ; χ ; Fp

≡ define χ = Fu , functor, property u

true.

When the u is a post-inverse, the premise that p is a base-congruence for ϕ is not needed,
since with ψ := Fu ; ϕ ; p the second step of the above calculation already reduces to
true . (It is needed that src p = tgtϕ .)

When the u is a pre-inverse, the target algebra of the homomorphism p is independent
of the choice for a pre-inverse of p : if both u ; p = id = v ; p , then, by formula 32,
Fu ; ϕ ; p = ψ = Fv ; ϕ ; p . 2
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So, in Set the notions of alg- and base-congruence coincide, and in arbitrary categories
an initial base-congruence p has also the initiality property with respect to the alg-
congruences, though p itself is not necessarily an alg-congruence. Thus it is to be expected
that a categorical construction of the initial base-congruence requires stronger conditions
of the underlying category and F than the construction of Lehmann [39]. I have not been
able to check this in detail. Lehmann’s construction does require that functor F preserves
epis, and that free F -algebras exist. (In the notation of Chapter 3 the free F -algebra is
something like µ(a+F ) .) Our construction assumes that C has arbitrary finite coequalis-
ers, pushouts and kernel pairs, and that F and the kernel pair functor K of paragraph 22
are ω -cocontinuous.

* * *

Henceforth we say just congruence rather than base-congruence. Before we can present a
construction of the induced congruence, we introduce some more notation and formalise
categorically the union of equivalences.

35 More notation. In order to compactify the formulas considerably, we introduce the
following abbreviations for parallel pairs (relations, hence the letter ρ ). For ρ = (f, g) ,
σ = (h, j) , and single morphisms x, y we define

x ;; ρ = (x ; f, x ; g)
ρ ;; y = (f ; y, g ; y)
ρ ;; σ = (f ; h, g ; j)
ρ equal ≡ f = g .

We give ; priority over ;; , so that ;; binds even weaker than ; and (x ; x′) ;; ρ ;; σ ;; (y ; y′)
can be written without parentheses, thus x ; x′ ;; ρ ;; σ ;; y ; y′ . It is quite important to be
aware that the source category of K is

∨
(a) and not C . For suppose that p is an object

in
∨

(a) and x, y are morphisms in
∨

(a) so that all three are morphisms in C . Then, of
course, K(x ; y) = Kx ; Ky , but K(p ; x) is not equal to Kp ; Kx since morphism Kx
in

∧
(a, a) is a single morphism in C and object Kp in

∧
(a, a) is a parallel pair in C .

Even with the ; replaced by ;; a composition of Kp with Kx (in either order) doesn’t
make sense in general.

With this notation the definition of congruence admits an alternative formulation. For
a parallel pair ρ = (f, g) ,

p includes (f, g) ≡ ρ ;; p equal
p is congruence for ϕ ≡ KFp ;; ϕ ; p equal .36

The former claim is obvious. For the latter we argue

p is congruence for ϕ

≡ original definition 32

∀ρ :: ρ ;; Fp equal ⇒ ρ ;; ϕ ; p equal

≡ definition K (paragraph 21 and 22), and
∧

(-, -)
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∀ρ :: (∃x :: ρ = x ;; KFp) ⇒ ρ ;; ϕ ; p equal

≡ proposition logic

∀ρ :: ∀x :: x ;; KFp ;; ϕ ; p equal

≡ proposition logic, Leibniz (for ⇐ ) and instantiation [x := id ] (for ⇒ )

KFp ;; ϕ ; p equal.

37 Uniting equivalences — pushout. Recall the concepts ‘proper’ and ‘equivalence’
discussed in Section 2d: a function p on set a is (or represents) an equivalence relation on
a , namely the one containing all (x, y) ∈ a× a for which p(x) = p(y) . An equivalence p
on a is called proper if function p is surjective. We shall now give a categorical description
of the (proper) union of two proper equivalences; this turns out to be a pushout construct.
So, let C be Set , and let a be a set and p, q be proper equivalences on a , fixed for the
following discussion. Here is the typing of p and q , and the variables used in the sequel.

- - -q q q

? ? ?

p p p

a a a
@
@
@
@
@@R

@
@
@
@
@@R

@
@
@
@
@@R

r r r

- -
r′ r′

? ?

r′′ r′′
B
B
B
B
B
B
B
B

s′′

PPPPPPPPP
s′ @

@@R

Each pair (r′, r′′) with p ; r′ = q ; r′′ determines an equivalence r on a that includes
both p and q , namely

r = p ; r′ = q ; r′′ .

(Indeed, the r so defined has source a , and if two elements of a have an equal image under
p , or q , then they have an equal image under r as well.) Conversely, if an equivalence
r on a includes both p and q , then p ; r′ = r = q ; r′′ for a pair (r′, r′′) uniquely
determined by r . (Indeed, let u satisfy u ; p = id (it exists since p is surjective), then
we can construct an expression for r′ as follows.

p ; r′ = r

≡ r includes p , hence r = p ; u ; r

p ; r′ = p ; u ; r

≡ surjectivity of p

r′ = u ; r.

Similarly for r′′ .) So, using the definition of
∨

(p q) in paragraph 7,

r is an equivalence on a including both p and q
≡
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p ; r′ = r = q ; r′′ for some –uniquely determined– object (r′, r′′) in
∨

(p q).

Now, for objects (r′, r′′) and (s′, s′′) in
∨

(p q) ,

“equivalence” (r′, r′′) is included in “equivalence” (s′, s′′)

≡ above representation of equivalences

equivalence p ; r′ (= q ; r′′) is included in equivalence p ; s′ (= q ; s′′)

≡ representation equivalences, set theory

p ; r′ ; x = p ; s′ ∧ q ; r′′ ; x = q ; s′′ for some x

≡ properness (surjectivity) of p and q

r′ ; x = s′ ∧ r′′ ; x = s′′ for some x

≡ definition
∨

(p q)

x: (r′, r′′)→ (s′, s′′) in
∨

(p q) for some x.

Finally, pt q is: the least, proper, equivalence that includes both p and q ; least meaning
being included in each equivalence that also includes both p and q . An explicit expression
for p t q is readily constructed. Define normal equivalence relations P,Q,R ⊆ a× a by

P = {(x, y)| p(x) = p(y)}
Q = {(x, y)| q(x) = q(y)}
R =

⋃
n :: (P ∪Q)n .

Then
p t q : a→ a/R
p t q = x 7→ the R -equivalence class of x .

Alternatively, p t q can be expressed by initiality as follows. Let p t q be represented by
(r′, r′′) in

∨
(p p) , and take u such that u ; p t q = id , which is possible since p t q

is surjective. Let equivalence s , including both p and q and represented by (s′, s′′) , be
arbitrary. Then the initiality statement

x: (r′, r′′)→ (s′, s′′) in
∨

(p q) ≡ x = some expr not involving x

is established as follows.

x: (r′, r′′)→ (s′, s′′) in
∨

(p q)

≡ definition
∨

(p q)

r′ ; x = s′ ∧ r′′ ; x = s′′

≡ properness (surjectivity) p and q

p ; r′ ; x = p ; s′ ∧ q ; r′′ ; x = q ; s′′

≡ representation p t q = r by (r′, r′′) , and s by (s′, s′′)

p t q ; x = s ∧ p t q ; x = s

≡ proposition logic
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p t q ; x = s

≡ below: s = p t q ; u ; s(∗)
p t q ; x = p t q ; u ; s

≡ surjectivity p t q
x = u ; s.

For step (∗) we argue by extensionality. For each x: 1 → a (an element in a considered
as a nullary function)

x ; s = x ; p t q ; u ; s

⇐ s includes both p and q

x ∆ (x ; p t q ; u) ∈ (P ∪Q)n for some n

≡ above observation p t q ≈ ⋃n :: (P ∪Q)n

x ; p t q = x ; p t q ; u ; p t q
≡ property u ; p t q = id

true.

So, indeed, p t q is initial in
∨

(p q) .
Abstracting from Set and the application here, an initial object in

∨
(p q) is called

a pushout of p and q .

38 Pushout. Let C be arbitrary, the default category. Let p and q be morphisms
with common source. The pushout of p and q is: an initial object of

∨
(p q) . Inspired

by the discussion above we use the notation

(p tw q, p wt q) = the initial object in
∨

(p q)
and put

p t q = p ; p tw q = q ; p
wt q ,

thus avoiding duplication of p and q in the composites. (For those who know pushouts,
ptw q is the pushout of q along p , and, in the conventional diagrammatic representation
of the pushout square, p tw q is parallel to q as suggested by the symbol tw . Similarly
for p

wt q , and p t q denotes the diagonal.)

-q

?

p

a
@
@
@
@
@@R

p t q

-
p tw q

?

p
wt q
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We write

([r′, r′′])p,q for ([p tw q, p wt q → r′, r′′])∨(p q) .

Then the well-formedness law reads

p ; r′ = q ; r′′ ⇒ ([r′, r′′])p,q : tgt (p t q) → tgt r′(= tgt r′′) pushout-Type

and the characterisation for pushouts works out as follows.

p tw q ; x = r′ ∧ p
wt q ; x = r′′ ≡ x = ([r′, r′′])p,q pushout-Charn

for each (r′, r′′) in
∨

(p q) .

As an illustration of some of the notation, here is a well-known fact that we’ll use later.

39 Fact. p
wt q is epic whenever p is epic.

Proof. Writing ρ for (x, y) we argue

ρ equal

≡ each colimit, hence pushout, is jointly epic

p
wt q ;; ρ equal and p tw q ;; ρ equal

≡ premise: p epic

p
wt q ;; ρ equal and p ; p tw q ;; ρ equal

≡ remember p ; p tw q = q ; p
wt q

p
wt q ;; ρ equal and q ; p

wt q ;; ρ equal

≡ Leibniz, proposition logic

p wt q ;; ρ equal.

2

40 Global constants. Category ω with endofunctor S has been defined in para-
graph 28. Let the default category C be an ω -cocomplete category that has all finite
coequalisers, kernel pairs, and pushouts, and for which the kernel pair functor K is ω -
cocontinuous. Let F be an ω -cocontinuous endofunctor on C , ϕ: Fa→ a be an algebra,
and ρ a parallel pair with target a . These entities, as well as D, γ, and p defined below,
are fixed throughout the sequel.

41 The construction. Define an ω -chain D in
∨

(a) as follows. First we define the ob-
jects Dn in

∨
(a) . (Interpreted in Set the objects Dn form an ascending chain of proper

equivalences, each DSn being the union of proper equivalence Dn with the equivalence
induced by KFDn ;; ϕ , so as to become more like a congruence, see equation 36.)

D0 = Cρ an object in
∨

(a)
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DSn = Dn t C(KFDn ;; ϕ) an object in
∨

(a)

for all n . The wish that D is a functor of type ω → ∨
(a) almost forces the definition of

the morphisms D(m≤n) . We shall nowhere use these clauses explicitly.

D(n≤n) = id : Dn→ Dn in
∨

(a)
D(m≤Sn) = D(m≤n) ; Dn tw C(KFDn ;; ϕ) : Dm→ DSn in

∨
(a)

for all m ≤ n . It is routine to verify, by induction on n , that D satisfies the typing as
indicated, and hence D: ω → ∨

(a) indeed.

Define γ to be the colimit for D in
∨

(a) , and define p to be its target:

γ: D .→ p is colimit for D, in
∨

(a) .

This definition of γ and p presupposes that
∨

(a) is ω -cocomplete, which in turn follows
from ω -cocompleteness of C ; see Mac Lane [41, exercise 1 on page 108]. (Interpreted in
Set equivalence p is defined to be the union of all the equivalences Dn .) By the naturality
of γ it follows that

γn: Dn→ p in
∨

(a)
that is,

Dn ; γn = p42

for all objects n in ω .

43 Theorem (Correctness) The p so defined is the congruence for ϕ induced by
ρ . Moreover, p is epic in C .

We shall prove the theorem in the three lemmas 44, 46, 47 that follow:

44: Morphism p is epic in C .
46: Morphism p is a congruence for ϕ including ρ .
47: Let q be a congruence for ϕ including ρ .

Then there exists a morphism p\q satisfying congruence-Charn 33.

The hint ‘coequaliser’ means that ‘σ ;; Cσ equal ’ holds for each σ .

44 Lemma. Morphism p is epic in C .

Proof.
x = y

≡ each colimit is jointly epic;

For all n :

γn ; x = γn ; y

≡ each Dn is epic (shown below in Lemma 45)

Dn ; γn ; x = Dn ; γn ; y

≡ observe γ: D .→ p , hence Dn ; γn = p

p ; x = p ; y.

2
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45 Lemma. Each Dn is epic.

Proof. By induction on n . The Basis is immediate since D0 = Cρ and each coequaliser
is epic. For the Step we argue

DSn epic

≡ definition DSn and t
Dn ; Dn tw C(KFDn ;; ϕ) epic

⇐ composition of epis is epic

Dn and Dn tw C(KFDn ;; ϕ) both epic

⇐ pushout of epi is epic: Fact 39

Dn and C(KFDn ;; ϕ) both epic

≡ induction hypothesis, each coequaliser is epic

true.

2

46 Lemma. Morphism p is a congruence for ϕ including ρ .

Proof. Morphism p includes ρ since

ρ ;; p equal

≡ observed in 42: D0 ; γ0 = p

ρ ;; D0 ; γ0 equal

⇐ Leibniz

ρ ;; D0 equal

≡ definition D0 = Cρ , coequaliser

true.

Morphism p is a congruence for ϕ since

KFp ;; ϕ ; p equal

⇐ F and K are ω -cocontinuous so preserve colimits,

hence KFγ is a colimit and, hence, jointly epic;

For all n :

KFγn ;; KFp ;; ϕ ; p equal

≡ observed in 42: p = DSn ; γSn ; similarly,

KFγ: KFD .→KFp in
∧

(Fa, Fa), so KFγn ;; KFp = KFDn

KFDn ;; ϕ ; DSn ; γSn equal

≡ definition DSn = Dn t C(KFDn ;; ϕ) , definition t
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KFDn ;; ϕ ; C(KFDn ;; ϕ) ; Dn
wt C(KFDn ;; ϕ) ; γSn equal

⇐ Leibniz

KFDn ;; ϕ ; C(KFDn ;; ϕ) equal

≡ coequaliser

true.

2

47 Lemma. Let q be a congruence for ϕ including ρ . Then there exists a morphism
p\q satisfying congruence-Charn 33.

Proof. Throughout the proof the notation →a abbreviates →∨(a) .

We guess that the desired p\q has the form γ\δ for some cocone δ: D .→ q . (This is a
very weak guess since many categorical constructions have this form.) (Both p\q and γ\δ
are morphisms in

∨
(a) and hence in C as well.) The existence of a δ: D .→ q for each q

is sufficient to establish congruence-Charn.

x: p→a q

≡ definition →a

p ; x = q

≡ observed in 42: p = Dn ; γn , similarly q = Dn ; δn

Dn ; γn ; x = Dn ; δn for all n

≡ Lemma 45: each Dn is epic

γn ; x = δn for all n

≡ colimit-Charn

x = γ\δ.
It remains to construct some cocone δ: D .→q in

∨
(a) for arbitrary q as in the statement

of the lemma. We shall derive δn: Dn→a q by induction on n , and show the naturality
afterwards.
For the Basis we argue

x: D0→a q

≡ definition D0 = Cρ ; coequaliser-Charn (Section 2d)(∗)
x = D0\q

where the use of coequaliser-Charn in step (∗) requires as well-formedness condition that
q includes ρ ; this is given by the premise. So we define δ0 = D0\q , and then have

x: D0→a q ≡ x = δ0 .(a)

For the induction Step the induction hypothesis says that δn: Dn →a q exists. Aiming
at a definition for δSn: DSn→a q we argue

x: DSn→a q

≡ definition →a and DSn = Dn t C(KFDn ;; ϕ)
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Dn t C(KFDn ;; ϕ) ; x = q

≡ proposition logic

Dn t C(KFDn ;; ϕ) ; x = q ∧ Dn t C(KFDn ;; ϕ) ; x = q

≡ for the left conjunct:

property f t g = f ; f tw g and

induction hypothesis q = Dn ; δn ;

for the right conjunct:

property f t g = g ; f
wt g and

explained below q = C(KFDn ;; ϕ) ; C(KFDn ;; ϕ)\q(∗)
Dn ; Dn tw C(KFDn ;; ϕ) ; x = Dn ; δn ∧
C(KFDn ;; ϕ) ; Dn

wtC(KFDn ;; ϕ) ; x = C(KFDn ;; ϕ) ; C(KFDn ;; ϕ)\q
≡ each coequaliser is epic, and so is Dn (Lemma 45)

Dn tw C(KFDn ;; ϕ) ; x = δn ∧
Dn wt C(KFDn ;; ϕ) ; x = C(KFDn ;; ϕ)\q

≡ pushout-Charn

x = ([δn, C(KFDn ;; ϕ)\q])Dn,C(KFDn;;ϕ).

In hint (∗) it is assumed that C(KFDn ;; ϕ)\q is well-formed (exists). The condition for
this is that q includes KFDn ;; ϕ , which is shown as follows.

KFDn ;; ϕ ; q equal

≡ induction hypothesis δn: Dn→a q ,

so KFδn: KFDn→∧(Fa,Fa) KFq , that is, KFDn = KFδn ;; KFq

KFδn ;; KFq ;; ϕ ; q equal

⇐ Leibniz, premise: q is congruence for ϕ

true.

So we define δSn = ([δn, C(KFDn ;; ϕ)\q])Dn,C(KFDn;;ϕ) , and then have

x: DSn→a q ≡ x = δSn .(b)

Finally, to show naturality (commutativity of all triangles) we argue

δ: D .→ q

≡ definition .→ , and q (n≤Sn) = id q = id

For all n :

D(n≤Sn) ; δSn = δn

≡ above (a), (b): x: Dn→a q ≡ x = δn

D(n≤Sn) ; δSn: Dn→a q

⇐ above (b): δSn: DSn→a q ; composition
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D(n≤Sn): Dn→a DSn

≡ functor; definition category ω

true.

2

2g Conclusion

This chapter contains nontrivial examples of algebraic calculation in the framework of cat-
egory theory. The calculations are quite smooth; there were few occasions where we had
to interrupt the calculation, for establishing an auxiliary result or for introducing a new
(name for a) morphism. Thanks to the systematisation of the notation and laws for the
unique arrows brought forward by initiality, there is less or no need to draw or remember
commutative diagrams for the inspiration or verification of a step in a calculation. Each
step is easily verified, and there is ample opportunity for machine assistance in this respect.
More importantly, the construction of required morphisms from others is performed as a
calculation as well. There are several places where a morphism is constructed by begin-
ning to prove the required property while, along the way, determining more and more of
(an expression for) the morphism. Thus proof and construction go hand-in-hand, in an
algebraic style.

There is one purpose for which pictures are certainly helpful: namely to present the
typing of various morphisms, in particular to see what morphisms have a common source or
common target. For example, in the course of constructing the proof in the last section (and
correcting failing attempts) I have used a picture of the pushout of Dn and C(KFDn ;; ϕ)
several times in order to convince myself that the formulas I wrote down made sense —
which was not always the case.

All calculations can be interpreted in Set so that, actually, we have quite involved
calculations with algorithms (functions). Calculations with algorithms working on more
usual datatypes will be explored further in the next chapter.



Chapter 3

Algebras categorically

Roughly speaking, an algebra is a collection of operations, and a homomorphism
between two algebras is a function that commutes with the operations. Homo-
morphisms are computationally relevant and calculationally attractive; they
occur frequently in transformational programming. Algebras are also used to
define the notion of datatypes.

The language of category theory provides for a simple and elegant formalisation
and investigation of homomorphisms and algebras; it also suggests a dualisation
and several generalisations.

3a Algebra, homomorphism

1 Distributivity. In transformational programming, distributivity and commutativity
properties of functions play an important rôle. We say that f distributes over binary
operation ⊕ if

f(x⊕ y) = fx⊕ fy
for all x, y . Expressed at the function level this reads:

⊕ ; f = IIf ; ⊕ ,

and this is a slight generalisation of the property that f commutes with ⊕ . A further
generalisation of the equation reads:

⊕ ; f = IIf ; ⊗ .

The equation asserts the semantic equality of two different ways of computing the same
value. In case the equation holds, the efficiency of a program may be improved by replacing

47
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a part ⊕ ; f in a program by IIf ; ⊗ (or just the other way around, that depends on
the the operations and function at hand). Thus function f is “promoted” (in the sense of
Bird’s [8] ‘Promotion and Accumulation strategies’, and Darlington’s [15] ‘filter promotion’)
from being a post-process of ⊕ into being a pre-process for ⊗ . (In view of this some
authors say “ f is ⊕ → ⊗ promotable”.) Notice also that such a program transformation
need not be done with an immediate efficiency improvement in mind, but may be done to
enable future transformations that do improve the efficiency in the end. Therefore such
generalised distributivity properties are relevant for transformational programming.

2 Generalisation. The typing of the above operations and function is

⊕: IIa→ a f : a→ b ⊗: IIb→ b

for some a, b . For a useful formal treatment we generalise the source structure of the
operations from II to an arbitrary functor F . So, writing ϕ, ψ for ⊕,⊗ , the typing
reads

ϕ: Fa→ a f : a→ b ψ: Fb→ b

for some a, b , and the more generalised distributivity property reads

ϕ ; f = Ff ; ψ .

This generalisation also captures the distribution over several operations simultaneously,
as shown by the following calculation.

ϕ0 ; f = F0f ; ψ0 ∧ ϕ1 ; f = F1f ; ψ1

≡ sum

(ϕ0 ; f) ∇ (ϕ1 ; f) = (F0f ; ψ0) ∇ (F1f ; ψ1)

≡ sum

ϕ0 ∇ ϕ1 ; f = F0f + F1f ; ψ0 ∇ ψ1

≡ functor

ϕ0 ∇ ϕ1 ; f = (F0 + F1)f ; ψ0 ∇ ψ1.

Notice also that the composite ϕ0 ∇ ϕ1 has a type of the form Fa→ a for some F :

ϕ0: F0a→ a ∧ ϕ1: F1a→ a ⇒ ϕ0 ∇ ϕ1: (F0 + F1)a→ a ,

so that ϕ0 ∇ ϕ1: Fa → a by taking F = F0 + F1 . Similarly, ψ0 ∇ ψ1: Fb → b if each ψi
has type Fib→ b .

In the computing science literature a collection

〈a; ϕ0: F0a→ a, ϕ1: F1a→ a, . . .〉
is called an algebra. Combining the individual operations ϕi into a single operation
ϕ = ϕ0 ∇ ϕ1 ∇ . . . : (F0 + F1 + · · ·)a→ a , the collection is fully determined by ϕ alone:

a = tgtϕ and ϕi = ini ; ϕ for all i .
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Conversely, each ϕ: Fa→ a determines such a collection:

〈tgtϕ; ϕ: Fa→ a〉 .
Thus each ϕ: Fa → a is called an algebra. Accordingly, a function f satisfying ϕ ;

f = Ff ; ψ is called an F -homomorphism from ϕ to ψ ; we write f : ϕ →F ψ . (Thus
promotability of f is nothing but the property that f is a homomorphism.) More precise
definitions are given in the sequel.

The generalisation from II to an arbitrary functor F is not yet the full story. Consider
an operation like

div ∆ mod : IInat → IInat ,

accepting and producing pairs of values. Abstracting from the particulars, this is an
operation ϕ: IIa→ IIa . Let ψ: IIb→ IIb be another binary operation that yields binary
results, and let f : a → b be a function. Then a generalised distributivity property for
these operations reads

ϕ ; IIf = IIf ; ψ .

Such a property is again quite relevant for transformational programming. The two occur-
rences of II generalise to two functors F,G so that

ϕ: Fa→ Ga f : a→ b ψ: Fb→ Gb ,

and the distributivity then reads

ϕ ; Gf = Ff ; ψ .

Such ϕ and ψ are called F,G -dialgebras (pronounced di-algebras), and such an f is
a homomorphism for F,G -dialgebras. Taking G = I we get the case of F -algebras as
a particular instance. Taking F = I gives the same result as what is got by dualising
the notion of algebra, hence known as co-algebra. (We keep saying ‘homomorphism’ in
all these cases, rather than ‘di-homomorphism’ etc.) We shall see in Section 3d that a
collection of algebras and co-algebras together is a single dialgebra, and that the notion of
dialgebra also covers many-sortedness.

3 Datatypes. A further motivation to study (di)algebras is their use in formalising the
notion of datatype. Briefly, a datatype is a collection of operations some of which are
“constructors”: each element of the datatype can be constructed by the constructors in a
finite way, and via these constructors functions on the datatype may be defined. So, part
of a datatype is a particular algebra; the distinguishing property is categorically known as
initiality of the algebra. Dualisation leads to the notion of final co-algebra; less known,
but quite useful as we shall see. There are reasonable conditions on F in order that an
initial F -algebra, or final F -co-algebra, exists. (I do not know of similar conditions for
dialgebras in general. Moreover, I do not know of ‘normal’ datatypes that can only be
modeled by initial or final nontrivial dialgebras. Hagino [29] shows that function spaces,
exponentials in category speak, are dialgebras.)
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The following definition captures the preceding observations. Anticipating laws homo-Id
and homo-Compose in paragraph 13, we also define the category of (di-,co-)algebras (but
see the remarks that follow the definition). We postpone the discussion and formalisation
of laws (conditional equations) satisfied by operations (algebras) to Chapter 5.

4 Definition. Let A, C be categories, C the default one, and F,G: A → C be functors.

An F,G -dialgebra is: a morphism ϕ typed

ϕ: Fa→ Ga Dialgebra

for some a called the carrier. Let ϕ, ψ be F,G -dialgebras. An F,G -homomorphism
from ϕ to ψ is: a morphism f for which

ϕ ; Gf = Ff ; ψ , denoted f : ϕ→F,G ψ Homo

It follows that f : carrierϕ→ carrierψ . We say just ‘homomorphism’ when F and G are
clear from the context.

Category DiAlg(F,G) is: the category built upon C that has the F,G -dialgebras as
objects, and the F,G -homomorphisms as morphisms in such a way that f : ϕ →F,G ψ
abbreviates f : ϕ→DiAlg(F,G) ψ . Functor U : DiAlg(F,G)→ C is defined by

Uϕ = the carrier of ϕ (an object in C ), for dialgebra ϕ
Uf = f : Uϕ→ Uψ, for f : ϕ→F,G ψ .

Notice that U depends on F,G ; a more precise notation would be UF,G .

An F -algebra is: an F, I -dialgebra (ϕ: Fa→ a ), and Alg(F ) = DiAlg(F, I) ,
an F -co-algebra is: an I, F -dialgebra (ϕ: a→ Fa ), and CoAlg(F ) = DiAlg(I, F ) ;
here it follows that A = C and F is an endofunctor.
Finally, →F , >−F abbreviate →F,I, →I,F respectively.

5 Remarks on the definition. The two formulas for Homo are easy to remember, in
spite of the swap of F,G when comparing the two formulas. The order of F,G in the
notation f : ϕ →F,G ψ is the same as the order of F,G in the typing of the dialgebras
ϕ: Fa → Ga and ψ: Fb → Gb . As regards the equation, since F describes the source
structure of the algebras, morphism Ff can only sensibly occur at the source side of an
dialgebra; similarly, Gf can only sensibly occur at an target side. Moreover, since f is
from ϕ to ψ , the occurrences of f are at the target side of ϕ and at the source side of
ψ . The equations denoted by →F and >−F differ only in the place of F ; the position is
indicated by the position of > on the “arrow” symbol.

Strictly speaking the definition of the categories is wrong in the sense that the mor-
phisms in DiAlg(F,G) —as defined above— do not have a unique source and target. It
may happen that both the equation denoted by f : ϕ →F,G ψ and the equation denoted
by f : χ →F,G ω are valid, while (ϕ, ψ) differs from (χ, ω) . To repair this defect, the
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morphisms in DiAlg(F,G) should be triples (ϕ, f, ψ) . Since category C is intended as
the universe of discourse, the equation f : ϕ →F,G ψ is often the statement of interest,
and not the statement that (ϕ, f, ψ) is a morphism in DiAlg(F,G) .

Functor U is usually called an Underlying or forgetful functor. Underlying, because
its target is the underlying category; forgetful, because it maps special morphisms of C ,
namely F,G -homomorphisms, into the collection of all morphisms of C , thus “forgetting”
the homomorphism property. We shall use U mainly as an abbreviation for ‘the carrier
of’.

It may happen that ϕ: Fa → Ga as well as ϕ: Fb → Gb for a 6= b , and in that
case Uϕ is not well defined: its result should be both a and b . To repair this defect too,
the objects of DiAlg(F,G) must more precisely be considered to be pairs (ϕ, a) for which
ϕ: Fa→ Ga in C . Thus, whenever we introduce an ‘F,G -dialgebra ϕ ’ and then use Uϕ
to denote its carrier, we should more precisely have introduced ‘F,G -dialgebra ϕ with
carrier a ’ so that Uϕ is uniquely defined to be a . (For algebras and co-algebras there is
nothing the matter since functor I is injective.)

Whenever the equation denoted by f : ϕ →F,G ψ holds, it follows that ϕ and ψ are
F,G -dialgebras. Indeed,

ϕ ; Gf = Ff ; ψ

⇒ Leibniz

src(ϕ ; Gf) = src(Ff ; ψ) ∧ tgt(ϕ ; Gf) = tgt(Ff ; ψ)

≡ assumption that the two compositions are well-formed

srcϕ = srcFf ∧ tgtGf = tgtψ

tgtϕ = srcGf ∧ tgtFf = srcψ

≡ functor, source-target notation

ϕ: F srcf → Gsrcf ∧ ψ: F tgtf → Gtgtf .

Examples (dialgebras)

6 Naturals. Recall the datatype of naturals as explained in paragraph 1.12. The single
operation zero is a 1 -algebra with carrier nat . Indeed,

zero: 1 → nat = 1(nat)→ nat .

The single operation succ is an I -algebra with carrier nat . Indeed,

succ: nat → nat = Inat → nat .

The combined operation zero ∇ succ is an 1 + I -algebra with carrier nat . Indeed,

zero ∇ succ: 1 + nat → nat = (1 + I)nat → nat .

The operation zero ∇ one ∇ succ ∇ add ∇ mult is an 1 + 1 + I + II + II -algebra. Indeed,

zero ∇ one ∇ succ ∇ add ∇ mult : 1 + 1 + nat + IInat + IInat → nat
= (1 + 1 + I + II + II)nat → nat .
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7 Cons lists. Recall the datatype of cons lists over a as explained in paragraph 1.12. The
single operation nil is an 1 -algebra with carrier La . Indeed,

nil : 1 → La = 1(La)→ La .

The single operation cons is an a× I -algebra with carrier La . Indeed,

cons: a× La→ La = (a× I)La→ La .

The combined operation nil ∇ cons is a 1 + a× I -algebra with carrier La . Indeed,

nil ∇ cons: 1 + a× La→ La = (1 + a× I)La→ La .

The single operation size is a nat -co-algebra with carrier La , as well as a La -algebra
with carrier nat . Indeed,

size: La→ nat = La→ nat(La) = La(nat)→ nat .

Combined operation nil ∇cons is a bijection between the sets 1 +a×La and La , and has
therefore an inverse (nil ∇ cons)∪. Operation (nil ∇ cons)∪ has type La→ 1 + a× La and
is a 1 + a× I -co-algebra; it decomposes a cons list into its constituents, the constituent of
the empty list being the sole member of 1 .

8 Streams. Similarly as above, various combinations of hd , tl , and from form F -co-
algebras or F -algebras, for suitably chosen functors F . Here is just one example. The
combined operation hd ∆ tl is a a× I -co-algebra. Indeed,

hd ∆ tl : Sa→ a× Sa = Sa→ (a× I)Sa .

9 Rose trees. A rose tree over a is a multi-forking tree with labels at the tips. Meertens [46]
discusses these in detail. Let Ra be the set of rose trees over a . The constructors are
tip: a → Ra and fork : LRa → Ra , so that fork builds one rose tree from a list of rose
trees. Then tip ∇ fork is an a+ L -algebra. Indeed,

tip ∇ fork : a+ LRa→ Ra = (a+ L)Ra→ Ra .

We shall later see that L (La denotes the set of lists over a ) can be extended to a functor,
so that a+ L is a functor indeed. 2

Examples (homomorphisms)

10 Taking F,G, ϕ, ψ = II, I,⊕,⊗ the statement f : ϕ→F,G ψ specialises to the equation
⊕ ; f = IIf ; ⊗ , which was discussed in paragraph 1.

11 The function f : nat → nat mapping n to 2n is an 1 + I -homomorphism from
zero ∇ succ to one ∇ double since

zero ∇ succ ; f
=
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(zero ; f) ∇ (succ ; f)
=

(id 1 ; one) ∇ (f ; double)
=

id 1 + f ; one ∇ double
=

(1 + I)f ; one ∇ double.

Actually, both f : zero →1 one and f : succ →I double are valid, and therefore also the
claim above; see law homo-Sum 18.

12 Function size is a homomorphism. Specifically, the defining equations of size in
paragraph 1.12 actually say:

size: nil →1 zero
size: cons →a×I add

hence
size: nil ∇ cons →1+a×I zero ∇ add .

The last line is immediate by writing out the equations in detail, as we did above for f ,
or by applying homo-Sum 18. 2

13 Laws for homomorphisms. We have already argued in paragraph 1 and 2 that
homomorphisms are computationally relevant. They are also calculationally attractive
since they satisfy a lot of algebraic properties. The first two are very important and
frequently used. Each of the laws is (an abstraction and generalisation of) a pattern of
reasoning that occurs somewhere in this text.

id : ϕ→F,G ϕ14 homo-Id

f : ϕ→F,G ψ ∧ g: ψ →F,G χ ⇒ f ; g: ϕ→F,G χ15 homo-Compose

f : ϕ→FH,GH ψ ≡ Hf : ϕ→F,G ψ16 homo-Ftr1

HFf = FHf ∧ HGf = GHf

f : ϕ→F,G ψ



 ⇒ Hf : Hϕ→F,G Hψ17 homo-Ftr2

f : ϕi →Fi,G ψi (i = 0, 1) ≡ f : ϕ0 ∇ ϕ1 →F0+F1, G ψ0 ∇ ψ118 h-Sum

f : ϕi →F,Gi ψi (i = 0, 1) ≡ f : ϕ0 ∆ ϕ1 →F, G0×G1 ψ0 ∆ ψ119 h-Prod

ε: H .→ F ∧ η: G .→ J

f : ϕ→F,G ψ



 ⇒ f : ε ; ϕ ; η →H,J ε ; ψ ; η20 homo-Ntrf

f : Hϕ→F,G Jϕ ≡ ϕ: Ff →H,J Gf21 homo-Swap

If F = I or G = I, then:22

ϕ is an F,G -dialgebra ≡ ϕ: Fϕ→F,G Gϕ homo-Triv

The proofs are all rather simple; in most cases it suffices to unfold the arrow notation
into the equation and use functor properties. Law homo-Sum is proved in paragraph 2 for
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the special case that G = I , and in paragraph 11 for a specific example. In the proof of
homo-Ntrf the naturality of ε and η is used, of course.

Law homo-Compose states that homomorphisms compose nicely; together with homo-
Id it asserts that F,G -dialgebras form a category; the category is called DiAlg(F,G) and
defined in paragraph 4.

Law homo-Ftr2 states that functors H: C → C that commute with both F and G
can be considered (or are) also functors typed DiAlg(F,G)→ DiAlg(F,G) . In particular,
F : Alg(F )→ Alg(F ) .

The condition in homo-Ntrf is stronger than necessary; it is sufficient if Hx ; ε =
ε ; Fx for x = f only, and similarly for η . Actually, this law states that the mapping
χ 7→ ε ; χ ; η is a transformer, a notion that plays a major rôle in Chapter 5.

Law homo-Swap is less general than it seems upon first sight: in order that one side is
well defined, the functors cannot be completely unrelated to each other.

All of the laws specialise to algebras and co-algebras, of course, by taking F = I or
G = I .

23 On the arrow notation. The notation f : ϕ →F,G ψ as an abbreviation for the
equation ϕ ; Gf = Ff ; ψ works pretty well: it avoids the duplication of f and it makes
the pattern of the equation into a single symbol. However, sometimes the unabbreviated
formula may be much clearer than that with the arrow notation. As an example, the
following law becomes almost trivial by just unfolding the arrow.

f : ϕ→F,G ψ ∧ f is an I -algebra ⇒24

f : Ff ; ϕ ; Gf →F,G Ff ; ψ ; Gf homo-Adhoc

(Using the arrow notation only, homo-Ntrf with the weakened premise may be used as
the main step in the proof.)

25 Example. (Use of the laws) Suppose that inits, tails: Lf →I LLf for all f , and
also flatten: LLf →I Lf . Define segs = inits ; Ltails ; flatten . Then

Lf ; segs = segs ; LLf

for all f . The proof is simple, thanks to the notation and laws for homomorphisms.

segs: Lf →I LLf

⇐ unfold segs , law homo-Compose 15

inits: Lf →I LLf, Ltails: LLf →I LLLf, flatten: LLLf →I LLf

⇐ for the middle conjunct: homo-Ftr2 17;

given equations (taking f := Lf for the right conjunct)

true.

Actually, the proof can be simplified further by noting that inits , tails , and flatten are
natural transformations, and so is segs . See paragraph A.13. 2
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3b Initiality and catamorphisms

We explain here informally what initiality in Alg(F ) means, and also finality in CoAlg(F ) .
Initiality or finality in DiAlg(F,G) in general has, as far as I know, no immediate practical
relevance; moreover, I know of no simple conditions on F,G that ensure that an initial or
final object in DiAlg(F,G) exists.

26 Initiality: catamorphisms. Suppose that Alg(F ) has an initial object, α say.
Fix this α throughout what follows, and write ([ϕ])F or just ([ϕ]) for ([α → ϕ])Alg(F ) , the
unique F -homomorphism from α to ϕ . This notation supposes that ϕ is an F -algebra:

ϕ is an F -algebra ⇒ ([ϕ]): Uα→ Uϕ . cata-Type

Each morphism that can be written as ([ϕ]) is called a catamorphism. Prefix cata is
explained below in paragraph 30. The laws for α and ([ ]) as explained in Chapter 2 work
out as follows.

α ; x = Fx ; ϕ ≡ x = ([ϕ]) cata-Charn

α ; ([ϕ]) = F ([ϕ]) ; ϕ cata-Self

id = ([α]) cata-Id

α ; x = Fx ; ϕ ∧ α ; y = Fy ; ϕ ⇒ x = y cata-Uniq

ϕ ; x = Fx ; ψ ⇒ ([ϕ]) ; x = ([ψ]) cata-Fusion

Most equations merely express that x is a homomorphism of a certain type. The premise
of cata-Fusion for instance can be formulated as x: ϕ→F ψ . The arrow notation makes
it easier to apply the homo-Laws discussed in paragraph 13. Using the arrow notation the
laws read as follows.

x: α→F ϕ ≡ x = ([ϕ]) cata-Charn

([ϕ]): α→F ϕ cata-Self

x, y: α→F ϕ ⇒ x = y cata-Uniq

x: ϕ→F ψ ⇒ ([ϕ]) ; x = ([ψ]) cata-Fusion

Here is yet another law that is specific for algebras (and cannot be formulated for initiality
in general). For arbitrary G -algebra ϕ and initial G -algebra β ,

ε: F .→G ⇒ ([ε ; β])F ; ([ϕ])G = ([ε ; ϕ])F cata-Compose

Another reading of the law is this: for ε: F .→G the composite ([ε ; β])F ; f is a catamor-
phism whenever f is a G -catamorphism. The proof of cata-Compose is simple:

([ε ; β])F ; ([ϕ])G = ([ε ; ϕ])F
⇐ cata-Fusion
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([ϕ])G: ε ; β →F ε ; ϕ

⇐ homo-Ntrf 20, ε: F .→G

([ϕ])G: β →G ϕ

≡ cata-Self

true.

27 Interpretation. Let a be the carrier of α , a = Uα . In paragraph 31 we shall
show that α is an isomorphism α: Fa ∼= a , the inverse of which we denote α∪. We might
call α a “constructor”, since in Set operation α is a bijection and each element of a can
be obtained as the outcome of α for precisely one argument, called the “constituents” of
the element. The inverse α∪ is then a “destructor”; it maps each element of a into its
constituents in Fa . Now look at the left hand side of cata-Charn:

α ; x = Fx ; ϕ or, equivalently,28
x = α∪ ; Fx ; ϕ.29

Thus cata-Charn says that this “inductive” equation has a unique solution for x . If
α were not initial, an equation like 28 might have no or several solutions: in Set , the
equation

α′ ; x = Fx ; ϕ

has at least one solution for x only if α′ is injective (“there is no confusion” and α′ has
a post-inverse), and the equation has at most one solution for x only if α′ is surjective
(“there is no junk” and α′ has a pre-inverse).

Notice that equation 29 uses explicitly the destructor α∪ to decompose the argument
into its constituents, whereas the equivalent equation 28 uses ‘pattern matching’ (the α )
as in functional languages.

The other laws have a similar informal interpretation. Law cata-Uniq says that if two
morphisms x and y both satisfy the same “inductive pattern”, namely x = α∪ ; Fx ; ϕ
and y = α∪ ; Fy ; ϕ, then they are the same. Thus cata-Uniq captures, in a sense,
induction. Law cata-Fusion may also be read as giving a sufficient condition on x and ϕ
in order that the composite ([ϕ]) ; x is a catamorphism.

30 ‘cata’. Meertens [46] has coined the name F -catamorphism for ([ϕ])F ( κατα
meaning ‘downwards’) since, interpreted as a computing agent, ([ϕ]) descends along the
structure of the argument (systematically replacing each α by ϕ , see example 39 below).
So a catamorphism is nothing but a homomorphism on an initial algebra. It is useful to
have a separate name, since in contrast to homomorphisms they are not closed under com-
position but do satisfy the laws listed above. In the literature on functional programming
catamorphisms on cons lists are called fold or iterate.



3b. Initiality and catamorphisms 57

31 Existence of α∪. An initial F -algebra α is —up to isomorphism— a fixed point
of F , that is, Fα ∼= α in Alg(F ) . To prove this, we have to establish a pair x, y of
morphisms in Alg(F ) (F -algebra homomorphisms in C ),

x : Fα→F α
y : α→F Fα ,

that are each other’s inverse. Law homo-Triv 22 immediately implies that x is α . Law
cata-Charn implies that y is ([Fα]) . (The existence of a candidate for y is problematic
for dialgebras in general.) It remains to show that these choices are each others inverse
indeed. For this we argue:

([Fα]) ; α = id

≡ cata-Id

([Fα]) ; α = ([α])

⇐ cata-Fusion

Fα ; α = Fα ; α

≡ equality

true.

So ([Fα]) is a pre-inverse of α . It is a post-inverse too:

α ; ([Fα])

= cata-Self

F ([Fα]) ; Fα

= functor, above: ([Fα]) is pre-inverse of α

F id

= functor

id .

As a corollary it follows that α: Fa ∼= a in C , where a = Uα :

α: FUα ∼= Uα in C
≡ U is the identity on morphisms, explained below: UF = FU(∗)
Uα: UFα ∼= Uα in C

⇐ functor

α: Fα ∼= α in Alg(F )

≡ just shown

true.

For step (∗) recall from paragraph 13 that F : C → C implies F : Alg(F ) → Alg(F ) ,
so that both UF and FU make sense. The equality UFf = FUf is now immediate
since U is the identity on morphisms, and the equality FUϕ = UFϕ is one of the functor
axioms for F .
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32 Existence of initial algebra µF . Recall that in each category all initial objects
are isomorphic to each other, even with precisely one isomorphism between each pair.
So we shall sometimes say ‘the’ initial F -algebra rather than ‘an’, assuming the choice
to be arbitrary but fixed. We let µF denote that initial F -algebra, if one exists; in
paragraph 61 we define the notation sumtype( ) as an extension of µ( ) . Variables α, β
range over initial algebras (and also over final co-algebras).

There exist categories and endofunctors F for which there is no initial F -algebra.
Yet, for Set and various order-enriched categories such as CPO the class of functors
for which an initial algebra exists is quite large. The key to this result has been shown in
paragraph 2.27: in each ω -category there exists an initial algebra for each ω -cocontinuous
functor. All functors generated by the grammar

F ::= I | a | F + F | F × F | type functor induced by Fa

are ω -cocontinuous. (The induced type functor is defined in paragraph 54. Malcolm [42]
has proved the result especially with regards to the last clause. We shall return to this in
paragraph 6.5.)

33 Establishing initiality. In order to prove that an F -algebra α′ is initial in Alg(F ) ,
it is required to define a function ([α′ → ])F and to establish the validity of law cata-Charn.
There are several instances of such proofs in the sequel.

Sometimes another F -algebra α is known to be initial. (As remarked above, for specific
categories and specific functors a construction of an initial algebra α is known.) In that
case it suffices to prove that α and α′ are isomorphic in Alg(F ) . Since cata-Charn
implies that ([α → α′])F is the the unique homomorphism from α to α′ , it suffices to
establish a homomorphism f : α′ → α that is both a pre- and a post-inverse of ([α → α′])F .
In our experience this method is less elegant than directly establishing cata-Charn, not
using α at all.

Examples (initial algebras and catamorphisms)

34 Naturals. Let F = 1 + I . Recall the F -algebra α = zero ∇ succ as explained
in paragraph 1.12. It is initial in Alg(F ) . To prove this, we provide a definition for
([zero ∇ succ → ])F , or briefly ([ ]) , and show the validity of cata-Charn. So, let ϕ =
e ∇ f : 1 + a→ a be arbitrary. We argue

α ; x = Fx ; ϕ

≡ definition α, ϕ, F

zero ∇ succ ; x = (1 + I)x ; e ∇ f

≡ functor, sum

(zero ; x) ∇ (succ ; x) = (id 1 ; e) ∇ (x ; f)

≡ sum

zero ; x = e ∧ succ ; x = x ; f

≡ knowledge about the well-known set nat and functions zero, succ
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x = the function n 7→ fn(e()) where () denotes the sole member of 1 .

Hence, defining ([e ∇ f ]) as the right hand side of the last line, the above calculation estab-
lishes law cata-Charn.

So, up to isomorphism zero ∇ succ is the same as µF , and if you did not know the
operations zero ∇succ and the set nat beforehand, we could define them now (or rather an
isomorphic collection) as µF and UµF . In the sequel we assume that zero ∇ succ = µF .

The inverse of α is ([Fα]) , see paragraph 31. So, the inverse of zero ∇ succ is pred =
([F (zero ∇ succ)])F : nat → 1 + nat . Working out this definition, we find:

pred = ([F (zero ∇ succ)])F
≡ cata-Self

zero ∇ succ ; pred = Fpred ; F (zero ∇ succ)

≡ functor, sum, definition F

(zero ; pred) ∇ (succ ; pred) = id + (pred ; zero ∇ succ)

≡ sum

(zero ; pred) ∇ (succ ; pred) = inl ∇ (pred ; zero ∇ succ ; inr)

≡ sum, pred is inverse of zero ∇ succ

zero ; pred = inl ∧ succ ; pred = inr .

The latter equations clearly express that pred is the inverse of zero ∇ succ . Writing (n)
for zero ; succn , we have (n+1) ; pred = (n) ; inr .

35 Cons lists. Let F = 1 + a × I . Recall the F -algebra α = nil ∇ cons as explained
in paragraph 1.12. It is initial in Alg(F ) . To prove this, we provide a definition for
([nil ∇ cons → ])F or briefly ([ ]) , and show the validity of law cata-Charn. So, let ϕ =
e ∇ ψ: Fb→ b be arbitrary. We argue

α ; x = Fx ; ϕ

≡ definition α, ϕ, F

nil ∇ cons ; x = (1 + a× I)x ; e ∇ ψ

≡ functor, sum

(nil ; x) ∇ (cons ; x) = (id 1 ; e) ∇ (ida × x ; ψ)

≡ sum

nil ; x = e ∧ cons ; x = id × x ; ψ

≡ knowledge about the well-known set La and functions nil , cons

x = (the function defined by nil ; x = e ∧ cons ; x = id × x ; ψ).

Specifically, the function mentioned in the last line is

cons(a0, . . . cons(an−1, nil())) 7→ ψ(a0, . . . ψ(an−1, e())) ,

for each a0, . . . , an−1 ∈ a . Hence, defining ([e ∇ ψ]) as that function, the above calculation
establishes law cata-Charn.
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So, nil ∇ cons is up to isomorphism the same as µF , and if you did not know the
operations nil ∇ cons and the set La beforehand, we could define them now (or rather an
isomorphic collection) as µF and UµF . In the sequel we assume that nil ∇ cons = µF .

36 Similarly the finite binary trees form an initial algebra, and so do the finite rose trees,
and so on.

37 Enumerated types. Modern programming languages allow, amongst others, to define a
new type by enumerating the elements of the type. As an example we show how to define
a type color with three elements red ,white, blue . To this end take F = 1 + 1 + 1 , and
α = UµF , and define

color = Uα
red ∇ white ∇ blue = α : 1 + 1 + 1 → color .

Let ϕ = f ∇ g ∇ h: Fa→ a be arbitrary, and consider the following equation for unknown
x: color → a .

α ; x = Fx ; ϕ

≡ definition α, ϕ, F

red ∇ white ∇ blue ; x = id + id + id ; f ∇ g ∇ h

≡ sum

red ; x = f ∧ white ; x = g ∧ blue ; x = h.

Initiality of α says that these equations define function x uniquely. Hence, color is a set
consisting of just three elements, called red , white, and blue .

As a particularly important application one may define

true ∇ false = µ(1 + 1)
bool = Uµ(1 + 1)

so that
true, false : 1 → bool .

38 Sum. Generalising the previous example, for each a, b the sum of a and b is an initial
a+ b -algebra. To see this, just observe that

inla,b ∇ inra,b ; x = (a+ b)x ; f ∇ g ≡ x = f ∇ g .

So, cata-Charn is valid with F, α, ([α → f ∇ g])F := a+b, inla,b∇inra,b, f∇g . As a corollary
it follows that ([f + g])a+b = f + g , since by definition f + g = (f ; inl a,b) ∇ (g ; inr a,b) . (To
be continued in paragraph 64. See also Section 5f.)

39 Repeated application of law cata-Self gives for any ϕ of the right type

F nα ; . . . ; FFα ; Fα ; α ; ([ϕ]) = FF n([ϕ]) ; F nϕ ; . . . ; FFϕ ; Fϕ ; ϕ .

This shows that “catamorphism ([ϕ]) systematically replaces the constructor α by oper-
ation ϕ .” Actually, both sides may be viewed as linearised notations of tree structured
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expressions (the tree-structure being determined by F ). The left hand side has the com-
ponents of α at the nodes (and ([ϕ]) is applied to the entire expression), the right hand
side has the components of ϕ at the nodes (and ([ϕ]) has sunk to depth n + 1 ). For
intuitive understanding take, for example, F = II or better F = 1 + II .

40 Take F = 1 + I and zero ∇ succ = µF . For this choice the equation of the previous
example is quite complicated to write down in a readable way as one equation. But it is
easy to derive a similar equation. First notice that cata-Self equivales

zero ; ([e ∇ f ])F = e
succ ; ([e ∇ f ])F = ([e ∇ f ])F ; f .

Repeated application of the latter equation, and once using the former, gives

zero ; succ ; succ ; . . . ; succ ; ([e ∇ f ])F = e ; f ; f ; . . . ; f
that is,

zero ; succn ; ([e ∇ f ])F = e ; fn .

This is just one of the ‘paths’ present in the equation of the previous example.

41 In Set the initial I -algebra has the empty set ∅ as carrier; the algebra itself is the
identity id∅: ∅ → ∅ . Indeed, for any ϕ: a→ a law cata-Charn holds true:

id∅ ; x = x ; ϕ ≡ x = (the unique morphism of type ∅ → a) .

More generally, in each category the morphism id 0 : 0 → 0 is the initial I -algebra, where
0 is the initial object. 2

42 Finality and anamorphisms. By definition final co-algebras and anamorphisms
are the dual notions of initial algebras and catamorphisms. The definitions and laws are
obtained by the mechanical process of dualising. So we can be brief here. The notation
νF denotes an arbitrary, but fixed, final F -co-algebra, assuming one exists.

Let F be an endofuctor. An F -co-algebra α is final in CoAlg(F ) iff law ana-Charn
holds, and therefore also the derived laws listed below. We write db(ϕ)ec for db(ϕ → α)ecF . This
notation supposes that ϕ is an F -co-algebra:

ϕ is an F -co-algebra ⇒ db(ϕ)ec: Uϕ→ Uα . ana-Type

The laws work out as follows.

ϕ ; Fx = x ; α ≡ x = db(ϕ)ec ana-Charn

ϕ ; F db(ϕ)ec = db(ϕ)ec ; α ana-Self

id = db(α)ec ana-Id

ϕ ; Fx = x ; α ∧ ϕ ; Fy = y ; α ⇒ x = y ana-Uniq

ϕ ; Fx = x ; ψ ⇒ db(ϕ)ec = x ; db(ψ)ec ana-Fusion

ε: F .→G ⇒ db(ϕ)ecF ; db(νF ; ε)ecG = db(ϕ ; ε)ecG ana-Compose
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Notice that most equations merely express that x is a homomorphism of a certain type.
The premise of ana-Fusion, for instance, can be written as x: ϕ >−F ψ . As for initial
algebras, a final co-algebra α is an isomorphism: α: a ∼= Fa where a = Uα , the inverse
of which we denote α∪. We might call α a “destructor”, since in Set operation α is a
bijection and it maps each element of a one-one to a result, called the “constituents” of
the element. The inverse α∪ is then a “constructor”; it maps each collection of constituents
in Fa onto the assembled element in a . Now look at the left hand side of ana-Charn:

ϕ ; Fx = x ; α or, equivalently,43
x = ϕ ; Fx ; α∪.44

Thus ana-Charn says that this equation has a unique solution for x . Equation 43 tells
that the destruction of the result of x (the right hand side) can be computed as given in
the left hand side.

Equation 44 uses explicitly the constructor α∪ to compose the intermediate results
(constituents) into the result, whereas the equivalent equation 43 uses ‘pattern matching’
(the α ) on the result in the right hand side. This type of definition, and algebra, is far
less known than that for initial algebras.

The other laws have a similar interpretation. Morphism db(ϕ)ecF is called anamorphism
(ανα meaning ‘upwards’); the name is due to Erik Meijer.

Examples (final co-algebras and anamorphisms)

45 In Set ‘the’ final I -co-algebra has ‘the’ one-point set 1 as carrier; the algebra itself
is the identity id 1 : 1 → 1 . Indeed, for each ϕ: a→ a law ana-Charn holds true:

ϕ ; x = x ; id 1 ≡ x = (the unique morphism of type a→ 1) .

More generally, in each category morphism id 1 : 1 → 1 is the final I -co-algebra, where 1 is
the initial object. Actually, this is nothing but the dual of the observation in paragraph 41.

46 Streams. Let F = a × I . Recall the F -co-algebra α = hd ∆ tl : Sa → FSa as
explained in paragraph 1.12. It is final in CoAlg(F ) . To prove this, we provide a definition
for db( → hd ∆ tl)ecF or briefly db( )ec , and show the validity of law ana-Charn. So, let ϕ =
e ∆ f : b→ Fb be arbitrary. We argue

ϕ ; Fx = x ; α

≡ definition α, ϕ, F

e ∆ f ; id a × x = x ; hd ∆ tl

≡ product, functor

e = x ; hd ∧ f ; x = x ; tl

≡ knowledge of set Sa and functions hd , tl(∗)
x = (the function defined by e = x ; hd ∧ f ; x = x ; tl).
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Step (∗) is justified since one can prove by induction on n that if x satisfies the two
equations, then

x ; tln ; hd = fn ; e .

So the outcome of x is expressed in a way not involving x , and therefore function x itself
is well defined. Specifically, for each b0 ∈ b

x(b0) = [e(b0), e(f(b0)), . . . , e(fn(b0)), . . .] .

Hence, defining db(e ∆ f)ec as that function x , the above calculation establishes law ana-
Charn.

So, hd ∆tl is up to isomorphism the same as νF , and if you did not know the operations
hd ∆ tl and the set Sa beforehand, we could define them now (or rather an isomorphic
collection) as νF and UνF . In the sequel we assume that hd ∆ tl = νF .

47 Cons′ lists. Take F = 1 + a× I . This is the functor for cons lists over a , that is, the
initial F -algebra is nil∇cons , see paragraph 35. Recall the F -co-algebra destruct ′: L′a→
FL′a as explained in paragraph 1.12. It is final in CoAlg(F ) . To prove this, we provide
a definition for db( → destruct ′)ecF or briefly db( )ec , and show the validity of law ana-Charn.
So, let ϕ: b→ Fb be arbitrary. We shall argue informally that the equation

ϕ ; Fx = x ; destruct ′

fully determines the outcome of x , and therefore has one solution for x , thus establishing
law ana-Charn (even though we are not very specific about db( )ec ). The only informality
in our argument is the claim that the infinite sequence

x ; ! : b→ 1

x ; destruct ′ ; F ! : b→ 1 + a× 1

x ; destruct ′ ; Fdestruct ′ ; F 2 ! : b→ 1 + a× (1 + a× 1)
...
x ; F 0destruct ′ ; . . . ; F ndestruct ′ ; FF n ! : b→ F F n

1
...

determines x completely. Accepting the claim, the reasoning is straightforward. By
induction on n it is easily shown that, for all n ,

x ; F 0destruct ′ ; . . . ; F ndestruct ′ ; FF n ! = F 0ϕ ; . . . ; F nϕ ; FF n ! .

So each of the functions in the list can be written as an expression in terms of known
functions, not involving x .

Since destruct ′ is final, it has an inverse destruct ′∪, and so nil ′ ∇ cons ′ = destruct ′∪ is
an F -algebra. (This equation complies with the explanation in paragraph 1.12.) It is not
an initial one: for example, the equations

nil ′ ; x = nil
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cons ′ ; x = id × x ; cons
that is,

x = destruct ′ ; id + id × x ; nil ∇ cons

have no solution x: L′a→ La . Indeed, the typing implies that x maps an infinite list onto
a finite list, but the equations imply that each result has the same length as its argument.
Also, for finite sets a containing at least two elements the cardinality of La is countably
infinite, whereas that of L′a is uncountable; hence the carriers are not isomorphic, implying
that the algebras are not isomorphic in Alg(F ) .

48 Iterate for streams. For arbitrary f : a → a function f -iterate, denoted f ω , is a
function that yields a stream of all iterated applications of f to the argument:

fωx = [x, fx, f 2x, f 3x, . . .] .

A definition as an anamorphism is derived as follows. Put F = a × I , the functor for
streams over a . Then

fω ; hd = id a ∧ fω ; tl = f ; fω

≡ product

(fω ; hd) ∆ (fω ; tl) = ida ∆ (f ; fω)

≡ product

fω ; hd ∆ tl = id a ∆ f ; ida × fω
≡ definition F , ana-Charn, interchanging left and right hand side

fω = db(id ∆ f)ecF .

As an example, the streams nats , ones , and nils are now readily defined.

nats = zero ; succω : 1 → Snat
ones = one ; idω : 1 → Snat
nils = nil ; idω : 1 → SLa .

49 Generalised iterate. Continuing the previous example, the generalisation of × to an
arbitrary bifunctor † , and of Set to an arbitrary category, suggests itself when id ∆ f is
rewritten as follows.

id ∆ f = split ; id × f
where

split = id ∆ id = split× : I .→ I × I .

Indeed, let the default category and † be arbitrary, and suppose that there exists a natural
transformation

split† : I .→ I † I .

For each a and f : a→ a morphism f-iterate, denoted fω , is defined as follows.

F = a † I
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fω = db(split † ; Ff)ec
F

: a→ UνF .

Notice that split † is not necessarily unique, and hence the fω so defined depends on the
choice for split † . (Moreover, the entire construction is natural in I -algebra f . This is
formally shown in paragraph 66.)

50 Iteration for cons′ lists. Let us specialise the general iteration construct to cons′ lists.
The functor for cons′ lists over a is

F = 1 + a× I
= a † I

where
x † y = id 1 + x× y for morphisms x, y .

Take

split† = split× ; inr : I .→ 1 + I × I = I .→ I † I .

and let a and f : a→ a be arbitrary. Then f -iterate fω
′
: a→ L′a specialises as follow.

fω
′

= definition iterate, split † and †
db(split× ; inr ; id 1 + id a × f)ec

= sum

db(split× ; id × f ; inr)ec
= definition split× = id ∆ id , product

db(id a ∆ f ; inr)ec
= ana-Self, invertibility destruct ′ = νF

id ∆ f ; inr ; Ffω
′

; destruct ′∪

= definition F , nil ′ ∇ cons ′ = destruct ′∪

id ∆ f ; inr ; id + id × fω′ ; nil ′ ∇ cons ′

= sum

id ∆ f ; id × fω′ ; inr ; nil ′ ∇ cons ′

= product, sum

id ∆ (f ; fω
′
) ; cons ′.

Now the cons′ list nats ′ of natural numbers is defined

nats ′ = zero ; succω
′

: nat → L′nat .

51 List of predecessors. Take F = 1 + I , being the functor for the naturals, and G =
1 + nat × I the functor for cons and cons′ lists over nat . We wish to express the cons and
cons′ list of all predecessors of a nat argument as a cata- and anamorphism, respectively.
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For preds: nat → Lnat we argue as follows. We start with equations that express the
desired outcome of preds with induction on the zero ∇ cons structure of the argument.
Hence in Set they define preds uniquely.

zero ; preds = nil

succ ; preds = id ∆ preds ; cons

≡ sum

(zero ; preds) ∇ (succ ; preds) = nil ∇ (id ∆ preds ; cons)

≡ sum, definition F

zero ∇ succ ; preds = F (id ∆ preds) ; nil ∇ cons

≡ putting α = zero ∇ succ and ϕ = nil ∇ cons

α ; preds = F (id ∆ preds) ; ϕ.

This equation has almost the form of the equations for F -catamorphisms. The only
difference is the appearance of id ∆ preds in the right hand side instead of just preds . So it
is not obvious that preds is a catamorphism. This type of equations has been studied by
Meertens [49] and the morphisms so defined are called paramorphisms; specifically, preds
is an F -paramorphism from zero ∇ succ to nil ∇ cons . (Actually, not every paramorphism
is a catamorphism, but this one is.) We will discuss paramorphisms briefly in Section 4b.

For preds ′: nat → L′nat we argue as follow. Again the top line of the following
calculation is taken for granted, and at least in Set it defines preds ′ as a total function.
Notice the correspondence with the equations and calculation for preds .

zero ; preds ′ = nil ′

succ ; preds ′ = id ∆ preds ′ ; cons ′

≡ as above: sum, definition F

zero ∇ succ ; preds ′ = F (id ∆ preds ′) ; nil ′ ∇ cons ′

≡ invertibility pred = (zero ∇ succ)∪ and nil ′ ∇ cons ′ = destruct ′∪

preds ′ ; destruct ′ = pred ; F (id ∆ preds ′)

≡ aiming at ana-Charn interchange lhs and rhs;

for all f : F (id ∆ f) = F split ; Gf

pred ; F split ; Gpreds ′ = preds ′ ; destruct ′

≡ ana-Charn, with F, α, ϕ := G, destruct ′, pred ; F split

preds ′ = db(pred ; F split)ecG.

So pred ′ is an anamorphism indeed.
Moreover, the above reasoning is readily generalised to arbitrary categories and functor

F , provided that µF and so on exist. Specifically, define for arbitrary F and α = µF

G = F ◦ Uα × I
and
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preds = the F -paramorphism from α to µG : Uα→ UµG
preds ′ = db(α∪ ; F split)ecG : Uα→ UνG .

Then, for preds by its very definition and for preds ′ by the same calculation as above, it
follows that

α ; pred = F (id ∆ preds) ; µG
α ; preds ′ = F (id ∆ preds ′) ; (νG)∪.

52 Until. Functions fω
′

and nats ′ produce infinite cons′ lists, whereas preds ′ produces
finite cons′ lists. A possibly finite, possibly infinite cons′ list is produced by an until
construct: f until p is a cons′ list containing all repeated applications of f until predicate
p holds.

Define in Set for predicate p on a the function p?: a→ a + a by

p?(x) = inl(x) if p(x) holds
= inr(x) if p(x) doesn’t hold .

A construction of p?: a→ a+ a from p: a→ 1 + 1 in arbitrary categories is not possible
in general. Now, for arbitrary f : a→ a the until-construct is defined as follows.

f until p : a→ L′a
f until p = p? ; (!a ; nil ′) ∇ (id ∆ (f ; f until p) ; cons ′) .

In spite of the recursion this is a proper definition since it is equivalent to defining f untilp
as an anamorphism (like in the previous example, G = 1 + a× I ):

f until p = p? ; (!a ; nil ′) ∇ (id ∆ (f ; f until p) ; cons ′)

≡ product and sum

f until p = p? ; !a + (id ∆ f) ; id + id × (f until p) ; nil ′ ∇ cons ′

≡ definition G , invertibility nil ′ ∇ cons ′ = destruct ′∪

f until p ; destruct ′ = p? ; !a + (id ∆ f) ; G(f until p)

≡ ana-Charn, interchanging lhs and rhs

f until p = db(p? ; !a + (id ∆ f))ecG.

Apart from the construction of p? out of p , the reasoning is completely general and
applicable in an arbitrary category, provided of course that νG = L′a and so on exist. 2

3c Type functors (formerly map functors)

53 Map for lists. For the datatype of lists the so-called map is well known and fre-
quently used; see for example Bird [9]. Recall the algebra of cons lists over a where,
now, a is considered to be a parameter rather than a fixed set, and actually nil , cons are
functions of a :

nila ∇ consa = µFa : FaLa→ La .
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Writing Lf for the well-known function map f it follows that

Lf : La→ Lb for f : a→ b
and

Lid a = idLa
L(f ; g) = Lf ; Lg .

These three statements together precisely assert that L is a functor. The omission of the
subscripts to nil and cons is now formally justified if nil∇cons is a natural transformation
typed

nil ∇ cons : 1 + I × L .→ L
that is,

nil : 1 .→ L
cons : I × L .→ L .

This is true indeed, as observed in paragraph 1.12.
We shall show that these observations hold not only for the particular functor Fa for

cons lists, but also for each parametrised functor Fa that depends functorially on a : it
induces a functor M such that

αa = µFa : FaMa→Ma

and, in fact,

α : G .→M where Ga = FaMa .

Functor M is often called the map functor, extending the terminology for lists. We prefer
the name sumtype functor or briefly type functor, since the word map is already in use for
various meanings, and sumtype is quite well chosen as explained in paragraph 60. Mal-
colm [42] has already formulated and proved all the laws. My contribution is merely some
extra subscripts at various places, some slight generalisation, and some more examples.

We discuss initial algebras in detail, and then dualise the results to final co-algebras,
giving prodtype functors. Both sumtype and prodtype functors are called just type func-
tors. The generalisation to arbitrary dialgebras is sketched in paragraph 55.

54 Defining the type functors. Take a category C as the default category. Let Fa
be an endofunctor that depends functorially on a , that is, Fa can be written a † I for
some bifunctor † . The most general typing is †: A × C → C for some category A . (In
most of the examples A = C × · · ·× C with zero, one or more factors). Using the so-called
section notation of functional languages we write a† for the endofunctor a † I ,

(a†)b = a † b
(a†)f = id a † f .

(For cons lists over a we have Fa = a† where x † y = id 1 + x × y for morphisms x, y .)
Suppose that an initial a† -algebra αa exists for each a . Define a mapping M on objects
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by

Ma = Uαa
so that

αa : a †Ma→Ma = FaMa→Ma .

We wish to define M on morphisms as well, in such a way that M becomes a functor;
apparently of type A → C . The requirement ‘Mf : Ma → Mb whenever f : a →A b ’
together with the wish ‘Mf is a catamorphism’ does not leave much room for the definition
of Mf (at each step “there is only one thing you can do”):

Mf : Ma→Mb

≡ guess and define (what else?) Mf = ([ϕ])a†
([ϕ])a†: Ma→Mb

⇐ cata-Type

ϕ: a †Mb→Mb

≡ since αb: b †Mb→Mb , guess and define ϕ = ψ ; αb

ψ ; αb: a †Mb→Mb

⇐ typing of composition, type of αb

ψ: a †Mb→ b †Mb

≡ since f : a→A b , guess and define ψ = f † idMb

f † idMb: a †Mb→ b †Mb

≡ typing axiom for functors, type of f

true.

Thus we have derived a candidate definition for M : A → C :

Ma = Uαa Sumtype

Mf = ([f † idMb ; αb])a† : Ma→Mb, for f : a→A b Sumtype

That the M so defined is a functor indeed is asserted in paragraph 57 below. It is called
the sumtype functor induced by † (actually, M also depends on the particular αa for
each a ). Notice that in Set function f † idMb subjects the a -constituents of its argument
to f , and leaves its argument unaffected otherwise. In the term f † id the “functoriality”
of Fa = a† in argument a is exploited by writing f instead of a as the left operand of
† .

The definition of the prodtype functor induced by † is dual to the sumtype functor.
Suppose that αa = ν(a†) exists for each a . Then

Ma = Uαa Prodtype

Mf = db(αa ; f † idMa)ecb† : Ma→Mb , for f : a→A b Prodtype

In the former terminology M is the map for co-algebras induced by † .
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55 Type functors for dialgebras. The generalisation to arbitrary dialgebras is a bit
tricky, and we shall nowhere use it. Consider bifunctors † and ‡ for which an initial
a†, a‡ -dialgebra αa exists for all a . Then a tentative definition for the sumtype functor
might read

Ma = Uαa
Mf = ([f † idMb ; αb ; f ‡ idMb])a†, a‡ : Ma→Mb , for f : a→A b .

But the expression enclosed by the brackets ‘([’ and ‘])’ is only well defined if f ‡ idMb has
type b ‡Mb→ a ‡Mb rather than a ‡Mb→ b ‡Mb , categorically: ‡ is contravariant in
its left argument. The most general typing, then, is

† : A× B → C
‡ : Aop × B → C (contravariance is indicated by op )
U : DiAlg(a†, a‡)→ B ,

so that
M : A → B .

Dually, a prodtype functor for dialgebras exists only if † instead of ‡ is contravariant in
its left argument.

56 Example. Cons lists. Take a† = 1 + a× I , the functor for cons lists, so that

nila ∇ consa = αa = µ(a†) : a † La→ La .

We shall prove that the sumtype functor and the well-known ‘map’ function are the same,
when applied to an arbitrary f : a→ b . In the following calculation the top line gives the
definition of L as the sumtype functor, the bottom line as the ‘map’ function.

Lf = ([f † idLb ; αb])a†
≡ cata-Charn

αa ; Lf = a † Lf ; f † idLb ; αb

≡ functor

αa ; Lf = f † Lf ; αb

≡ definition of † , and nil , cons

nila ∇ consa ; Lf = id 1 + f × Lf ; nil b ∇ consb

≡ sum, functor

nila ; Lf = nil b
consa ; Lf = f × Lf ; consb

.

Notice also that the two bottom lines assert

nil : 1 .→ L
cons : I × L .→ L

hence
nil ∇ cons : 1 + I × L .→ L = I † L .→ L .

This is also expressed in the third line of the calculation.
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57 Laws for sumtype. Here are some useful laws. Let †: A×C → C be a functor, and
take C as the default category. In each law, functor M : A → C is the sumtype functor
induced by † , and αa = µ(a†) . Each ([ ]) is short for ([αa → ])a† for some a , and f, g are
morphisms in A . Some explanation and explicit typing follows the enumeration.

M id a = idMa sumtype-Id

M(f ; g) = Mf ; Mg sumtype-Distr

Mf ; ([ϕ]) = ([f † id ; ϕ]) type-cata-Fusion

f : ϕ→I†I ψ ⇒ f : ([ϕ])→M ([ψ]) cata-Transformer

α : I †M .→M initial-Ntrf

ϕ: F †G .→G ⇒ ([ϕ]): MF .→G cata-Ntrf

Examples 62–67 illustrate some laws. Law sumtype-Distr is well-known under the name
map distribution; we shall invoke it by the more general phrase ‘(sumtype is a) functor’.
Law type-cata-Fusion is Verwer’s [72] factorisation theorem; this law asserts pre-fusion in
contrast with cata-Fusion. Fully typed the law reads:

Mf ; ([ϕ])b† = ([f † id c ; ϕ])a† : Ma→ c for ϕ: b † c→ c, f : a→A b .

Law cata-Transformer asserts that the mapping ϕ 7→ ([ϕ]) is a transformer; the notion
of transformer is explained in Chapter 5. The ingredients of law cata-Transformer are
typed as follows: A = C and

ϕ: a † a→ a, f : a→A b, ψ: b † b→ b
hence

([ϕ])a†: Ma→ a, ([ψ])b†: Mb→ b .

58 Laws for prodtype. Dually, let M be the prodtype functor induced by † , and let
αa = ν(a†) . Then the preceding laws dualise to these.

M id a = idMa prodtype-Id

M(f ; g) = Mf ; Mg prodtype-Distr

db(ϕ)ec ; Mf = db(ϕ ; f † id)ec ana-type-Fusion

f : ϕ >−I†I ψ ⇒ f : db(ϕ)ec >−M db(ψ)ec ana-Transformer

α : M .→ I †M final-Ntrf

ϕ: F .→G † F ⇒ db(ϕ)ec: F .→MG ana-Ntrf

59 Proofs for the laws. For the —simple— proofs of the sumtype and prodtype laws
we refer to Malcolm [42]. Law cata-Compose 26 can be exploited for sumtype-Distr,
since f † id , considered as the mapping c 7→ f † id c , is a natural transformation of type
a † I .→ b † I whenever f : a→ b .
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60 Syntactic sugar. Inspired by Hagino [29] and justified by initial-Ntrf and cata-
Ntrf, Wraith [77] suggests the following concrete syntax for the simultaneous definition
of the initial algebra (or its ‘components’), the sumtype functor, and a name for the
catamorphism brackets. For example, cons lists can be defined by the declaration

sumtype Lx with rightreduce is
nil : 1 → Lx
cons : x× Lx → Lx .

Apart from defining L and nil , cons in the obvious way, the declaration also defines

rightreducea (e, f) = ([nila ∇ consa → e ∇ f ]) : La→ b ,

for all a, b and e: 1 → b and f : a× b→ b . More abstractly, the declaration

sumtype Mx with cata is alpha: x †Mx→Mx

or, without bound variables,

sumtype M with cata is alpha: I †M .→M

stands for the three definitions

M = sumtype functor induced by †
alphaa = µ(a†) : a †Ma→ a for all a
cataa(ϕ) = ([alphaa → ϕ])a† : Ma→ Uϕ for all a .

The name ‘sumtype’ is well-chosen since a sumtype generalises the categorical sum:

sumtype Sum (x, y) with junc is
inleft : x → Sum (x, y)
inright : y → Sum (x, y)

defines the categorical sum:

Sum (x, y) = x+ y
inleft , inright = inl , inr
junc (f, g) = f ∇ g .

(This is explained in detail in Examples 38 and 64.)
Dually, given a bifunctor † , the prodtype functor M induced by † , the polymorphic

final co-algebra alpha and anamorphism ana are defined by the single declaration

prodtype Mx with ana is alpha: Mx→ x †Mx .

Using again an enumeration of the components of alpha , the declaration

prodtype Sx with generate is
hd : Sx → x
tl : Sx → Sx

defines the final co-algebra of streams together with its prodtype functor.
Needless to say that a declaration itself does not guarantee the existence of the declared

entities. There are, however, simple sufficient conditions on † , see paragraph 32.
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61 Sumtype, Prodtype. Let † be a bifunctor for which µ(a†) exists for each a .
Then sumtype(†) denotes the pair α,M where α: I †M .→M is the family µ(a†) , and
M is the sumtype functor induced by † . This is a convenient shorthand for the concrete
syntax proposed above, since we use ([ ]) as a generic name for the catamorphisms (writing
([α → ])F to avoid ambiguity). We say ‘ -,M = sumtype(†) ’ when it is only M that matters.

Dually, prodtype(†) denotes the pair α,M where α: M .→ I †M is the family αa =
ν(a†) and M is the prodtype functor induced by † .

Examples

62 (To illustrate sumtype-Distr.) For arbitrary -,M = sumtype(†) , define the “shape”
of elements from Ma to be elements of M 1 :

shapea = M !a : Ma→M1 .

Then “each type functor preserves the shape”, since for any f : a→ b

Mf ; shapeb = Mf ; M !b = M(f ; !b) = M !a = shapea .

63 (To illustrate type-cata-Fusion 57.) In the context of cons lists and naturals, define

sumsquares = L sq ; ([zero ∇ add ]) : Lnat → nat .

Then the composite sumsquares is a single catamorphism; usually this is proved by the
Fold-Unfold technique. By type-cata-Fusion 57 in step (∗) we have

sumsquares
=
L sq ; ([zero ∇ add ])

=(∗)
([sq † id ; zero ∇ add ])

=
([id + sq × id ; zero ∇ add ])

=
([zero ∇ (sq × id ; add)]).

64 (Bifunctor + is a sumtype functor.) Let † be defined by (x, y) † z = x + y . In
Example 38 we’ve shown that the initial a + b -algebra is inl a,b ∇ inra,b , with f ∇ g being
the catamorphism for a+ b -algebra f ∇ g: a+ b→ c . Now, the sum functor + is just the
sumtype functor induced by † . To see this, let -,M = sumtype(†) , and consider arbitrary
objects a, b . Then

M(a, b)

= Sumtype

carrier of the initial a + b-algebra inl a,b ∇ inra,b

= observed in paragraph 38

a+ b,
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and for arbitrary (f, g): (a, b)→C×C (c, d)

M(f, g)

= Sumtype

([(f, g) † id ; inl ∇ inr ])(a,b)†
= definition † , sum

([f + g])(a,b)†
= observed in paragraph 38

f + g.

So, indeed, M = + .

65 (Zip, to illustrate ana-type-Fusion.) Consider once more the datatype of streams:
α,M = prodtype(×) and hd ∆ tl = α . The well-known zip maps a pair of streams onto a
stream of pairs, like a zipper, and ‘ zipwith-f ’ applies in addition function f to each pair
in the result stream of zip .

[a, . . .], [b, . . .]
zip7→ [(a, b), . . .]

Sf7→ [f(a, b), . . .] .

The following calculations show that zip and zipwith-f are anamorphisms. As a prepa-
ration define

abideF = F exl ∆ F exr
so that

abideII = IIexl ∆ IIexr .

The reasoning from the (in)formal specification to the anamorphism form reads:

zip = IIhd ∆ IItl ; id × zip ; (hd ∆ tl)∪

≡ definition abide , product, invertibility α = hd ∆ tl

zip ; α = IIα ; abideII ; id × zip

≡ ana-Charn exchanging the left and right hand sides

zip = db(IIα ; abideII)ec.

Now, with the next line being the definition, we calculate

zipwith-f = zip ; Sf

≡ definiton zip , ana-type-Fusion

zipwith-f = db(IIα ; abideII ; f × id)ec.

66 (To illustrate ana-Transformer 58.) Recall the definition of f -iterate given in para-
graph 49. For f : a→ a ,

fω = db(split † ; ida † f)ec
a† : a→Ma ,
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where α,M = prodtype(†) , and split †: I .→ I † I . Iteration is a transformer:

f : g >−I h ⇒ f : gω >−M hω iterate-Transformer

Here is the proof.

f : db(split † ; id † g)ec >−M db(split † ; id † h)ec
⇐ ana-Transformer 58

f : split † ; id † g >−I†I split† ; id † h
≡ definition >−

split † ; id † g ; f † f = f ; split † ; id † h
⇐ naturality split †: I .→ I † I , Leibniz

g ; f = f ; h.

Simple applications of iterate-Transformer are the equations

nil ; idω = idω ; S nil = nils
one ; idω = idω ; S one = ones .

With † = × , both sides denote a stream of ‘ones’, for arbitrary one: 1 → nat .

67 Continuing the previous example, with α,M = prodtype(†) , we derive another equa-
tion for fω :

fω = db(split † ; id † f)ec
a†

≡ ana-Charn

fω = split † ; id † f ; id † fω ; α∪

≡ functor, iterate-Transformer

fω = split † ; id † (fω ; Mf) ; α∪.

Bird and Wadler [11, page 182–183] prove this very equation for the special case that † = ×
(hence α = hd ∆ tl ) by means of the so-called Take Lemma:

∀(n :: take n x = take n y) ⇒ x = y .

They say: “[The equation] cannot be proved by induction [on the structure of the argument]
because there is no appropriate argument of iterate [the mapping ω ] to do the induction
over. Indeed, what we would like to do is establish the assertion by induction over the
structure of the result of applying iterate [that is, the result of fω ].” For this purpose they
present and justify the Take Lemma. The proof above is just a few lines long (or 75 pages
depending on what you consider to be part of the proof). 2
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Factorisation of the type functor

The sumtype functor M induced by † can be factored into a composition of two functors,
namely M = Mu ◦ †⊂ . Functor Mu is independent of † and occurs in other contexts as
well; it is closely related to µ (mapping each functor into an initial algebra). Functor †⊂
is the curry-ed version of † , and is therefore almost the same as † . As a consequence, the
phrase “Let M be the sumtype functor induced by † ” is in principle no longer needed: we
can just write Mu ◦ †⊂ where M occurs. (Most of the results reported here were observed
by Meertens [23].)

68 Functor Mu . Let FC denote the category of endofunctors on C whose morphisms
are natural transformations; one might write FC = C → C . Let F ′C denote the full
subcategory of FC whose objects are those functors F for which µF exists. Define
functor Mu: F ′C → C as follows.

Mu F = UµF, for F in F ′C
Mu ε = ([ε ; µG])F : Mu F → Mu G, for ε: F .→G .

Notice that εMuG: F Mu G → GMu G and µG: GMu G → Mu G , so that their compo-
sition has type F Mu G → Mu G , hence Mu ε has the type indicated. As usual we omit
the subscript to ε . To prove that Mu distributes over composition, let ε: F .→ G and
η: G .→H . Then ε ; η: F .→H , and

Mu(ε ; η)
=

([ε ; η ; µH])F
= cata-Compose 26, noting that η ; µH: GMu H → Mu H

([ε ; µG])F ; ([η ; µH])G
=

Mu ε ; Mu η.

The equality Mu id = id follows from the axiom for identity and law cata-Id. Thus Mu
is a functor, Mu: F ′C → C .

As a by-product it follows that the objects of the form UµF together with the cata-
morphisms of the form ([ε ; µG])F for ε: F .→G form a subcategory of C .

Examples

69 A simple illustration for a catamorphism of the form Mu ε is obtained by the choice

F = 1 + a× I hence µF = nil ∇ cons
G = 1 + I hence µG = zero ∇ succ
ε = id + exr : F .→G .

Now
Mu ε = ([id + exr ; zero ∇ succ])F = size .
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70 Another choice is F = G = a + II , so that Mu F = Mu G = the set of non-empty
binary trees over a , and µF = tip ∇ join . (Skip this example if you don’t know the binary
trees.) Take ε = id + swap: F .→G where swap = swap× = exr ∆ exl . Now

Mu ε = ([id + swap ; tip ∇ join]) = swap-reduce = reverse .

Since Mu is a functor, there is a simple proof that reverse is its own inverse:

reverse ; reverse
=

Mu ε ; Mu ε

= functor axiom

Mu(ε ; ε)

= easy: swap ; swap = id , hence ε ; ε = id

Mu id
=

id .

By the remark following cata-Compose 26, reverse ; f is a catamorphism whenever f is.

71 Let † be a bifunctor and α,M = sumtype(†) . Take

ε = !a † id : a † I .→ 1 † I .
Then

Mu ε = ([ !a † id ; α1 ])a† = shape = M !a .

2

72 Factorisation. The latter example is the key to the factorisation of the sumtype
functor. Let †: A × C → C be a bifunctor for which α,M = sumtype(†) exists. Define
the curry-ed † , denoted †⊂: A → F ′C , by

†⊂ a = a†
†⊂ f = f† : a† .→ b† where (f†)c = f † id c = (f † id)c

for any f : a→A b . That †⊂ f is a natural transformation is easily verified; it follows from
laws ntrf-Const, -Id, -BiFtr in paragraph A.13. Now

(Mu ◦ †⊂) a = Mu(a†) = Ma
(Mu ◦ †⊂) f = Mu(f†) = ([f† ; αb])a† = Mf .

So M = Mu ◦ †⊂ .
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3d Many-sortedness and other variations

73 Many-sorted algebra. The notion of (di)algebra is rich enough to model many-
sorted (di)algebras. As an example consider the collection

〈bool , nat ; true, false, bool-to-nat, zero, succ, equal〉 .

This collection is or suggests a two-sorted algebra, the two sorts (types) being bool and
nat . In view of the typing bool-to-nat: bool → nat and equal : IInat → bool both sorts
are needed simultaneously to specify the operations.

We shall show that by instantiating the underlying category to a product category,
category Alg(F ) consists of many-sorted algebras indeed. Besides that, a single initial
many-sorted algebra can be expressed as many initial single-sorted algebras. Thus the
existence conditions and the construction for initial algebras over a product category are
reduced to initial algebras over the component categories. These two results say that the
theory for just ‘normal’ algebras also applies to many-sorted algebras.

We formalise only the case “many = two”. It has the advantage that the formulas are
simpler than in the general case, whereas all essential aspects are covered. You can easily
generalise the discussion to “many = n ” for arbitrary natural n .

74 Formalisation. The example above motivates the following definition. A two-
sorted †, ‡ -algebra is: a pair (ϕ, ψ) with

ϕ: a † b→ a and ψ: a ‡ b→ b

for some a, b called the sorts of the two-sorted algebra. Let (ϕ, ψ) and (χ, ω) be two-
sorted †, ‡ -algebras. A two-sorted †, ‡ -homomorphism from (ϕ, ψ) to (χ, ω) is: a
pair (f, g) with

ϕ ; f = f † g ; χ and ψ ; g = f ‡ g ; ω
so that

f : tgtϕ→ tgtχ and g: tgtψ → tgtω .

For this to make sense † and ‡ should be bifunctors with common source A × B and
targets A and B respectively, for some categories A and B . Clearly, the two-sorted
algebras with their homomorphisms constitute a category, 2-Alg(†, ‡) say.

There is, however, a simpler definition for two-sorted algebras. Recall the notion of
product category: its objects and homomorphisms are pairs, and composition etc, are
defined coordinatewise. Taking † and ‡ as above, the composite † ∆ ‡ is an endofunctor
on A×B . Spelling out what it means to be an object or morphism in Alg(† ∆ ‡) (having
underlying category A× B ), we’ll see that these are exactly the two-sorted †, ‡ -algebras
and homomorphisms defined above:

(ϕ, ψ) in Alg(† ∆ ‡)
≡
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(ϕ, ψ): († ∆ ‡)(a, b)→A×B (a, b)
≡
ϕ: a † b→A a and ψ: a ‡ b→B b

and further

(f, g): (ϕ, ψ)→Alg(†∆‡) (χ, ω)
≡

(ϕ, ψ) ; (f, g) = († ∆ ‡)(f, g) ; (χ, ω)
≡
ϕ ; f = f † g ; χ and ψ ; g = f ‡ g ; ω.

Thus,

2-Alg(†, ‡) = Alg(† ∆ ‡) ,

and the prefix “two-sorted †, ‡ -” is just the same as “ † ∆ ‡ -”.

The case n = 0 . The case n = 0 degenerates to the trivial algebra for the trivial nullary
functor into the trivial category:

1l = the 0-fold product category
has 1 as only object, and id 1 as only morphism

1 = the only 0-ary functor from 1l to 1l
id 1 : 1(1)→1l 1 .

75 Two-sortedness and initiality. The following theorem has already been observed
by Wraith [77]. He gives the proof in classical categorical language and style, with many oc-
currences of the phrase “this gives a unique arrow.” I could understand his proof only after
constructing the proof below, where the uniqueness is made explicit by using formulation
cata-Charn.

76 Theorem. Let †, ‡ be bifunctors. Suppose that µ(†b) and µ(a‡) exist for all a, b .
Then there exist endofunctors F,G such that

(µF, µG) is initial in Alg(† ∆ ‡) .

Specifically, F = I †M and G = (UµF )‡ , where -,M = sumtype(‡) .
For this to make sense it is required that there are categories A,B , and that functors

†, ‡ have source A×B and target A and B respectively, and that F,G are endofunctors
on A× B . Then it follows that M : A → B .

Proof. For whatever F and G are going to be, put α, β = µF, µG and a, b = Uα, Uβ .
We shall synthesise a pair F,G and an expression for ([(α, β) → ])†∆‡ such that assertion

(x, y) : (α, β) →†∆‡ (ϕ, ψ) ≡ (x, y) = ([(α, β) → (ϕ, ψ)])†∆‡

is valid, thus establishing initiality of (α, β) in Alg(† ∆ ‡) .
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Let (ϕ, ψ) be an arbitrary † ∆ ‡ -algebra, say

ϕ : c † d→ c
ψ : c ‡ d→ d

for some c, d . It follows that x: a → c and y: b → d (for the x, y in the desired
equivalence). Now we argue

(x, y): (α, β)→†∆‡ (ϕ, ψ)

≡ product category

α ; x = x † y ; ϕ ∧ β ; y = x ‡ y ; ψ

≡ bifunctor (aim: express y as a homomorphism from β )

α ; x = x † y ; ϕ ∧ β ; y = ida ‡ y ; x ‡ idd ; ψ

≡ define G := a‡ = (UµF )‡ , cata-Charn

α ; x = x † y ; ϕ ∧ y = ([x ‡ id d ; ψ])G
≡ type-cata-Fusion,

abbreviate f = ([ψ])c‡ and define -,M = sumtype(‡)
α ; x = x † y ; ϕ ∧ y = Mx ; f

≡ substitute y = Mx ; f in left conjunct, functor

α ; x = (I †M)x ; id c † f ; ϕ ∧ y = Mx ; f

≡ define F = I †M , cata-Charn

x = ([id c † f ; ϕ])F ∧ y = Mx ; f

≡ product category

(x, y) = (([id c † f ; ϕ])F , Mx ; f).

Thus we have found the required definitions of F,G and ([ ])†∆‡ . 2

Bialgebras

77 Bialgebras. A datatype like stack with operations empty , push , isempty , top
and pop has not the form of an algebra ϕ: Fa → a , but is rather a pair (ϕ, ψ) with
ϕ: Fa→ a and ψ: a→ Ga , for some endofunctors F,G . For stack we have

ϕ = empty ∇ push : 1 + b× a→ a = Fa→ a
ψ = isempty ∆ top ∆ pop : a→ bool × b× a = a→ Ga ,

where b is the type of the stacked values (and a is the type of the stacks themselves).
We call such a pair (ϕ, ψ) a (single-sorted) F,G -bialgebra. For stack there are some
laws that relate the operations to each other; this aspect, not relevant here, is discussed in
Chapter 5. Also, bialgebra stack is special among the bialgebras of the same type in that
it is initial in some sense. Also this aspect is irrelevant for the formalisation of bialgebra
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proper. An F,G -bialgebra homomorphism from (ϕ, ψ) to (χ, ω) is a morphism f
satisfying

ϕ ; f = Ff ; χ and ψ ; Gf = f ; ω .

Clearly, the F,G -bialgebras and homomorphisms form a category, called BiAlg(F,G) ,
that is built upon the default category.

78 Bialgebras are dialgebras. Similarly to many-sorted algebras, a bialgebra is a
particular dialgebra. Let F,G be endofunctors (on the default category), and consider
DiAlg(F ∆ I, I ∆ G) . Then

(ϕ, ψ) in DiAlg(F ∆ I, I ∆ G)
≡

(ϕ, ψ): (F ∆ I)a→C×C (I ∆ G)a for some a
≡
ϕ: Fa→ a and ψ: a→ Ga for some a

and moreover

f : (ϕ, ψ)→DiAlg(F∆I,I∆G) (χ, ω)
≡

(ϕ, ψ) ; (I ∆ G)f = (F ∆ I)f ; (χ, ω)
≡
ϕ ; f = Ff ; χ and ψ ; Gf = f ; ω.

Hence

BiAlg(F,G) = DiAlg(F ∆ I, I ∆ G) .

(Notice, by the way, that f above is a morphism in the source of F ∆ I and I ∆G , which
is the default category. So in contrast to the case for two-sorted algebras, f is not a pair.)

79 Two-sorted bialgebras. The generalisation to two-sorted bialgebras is straightfor-
ward. We won’t use these algebras anywhere in the sequel, and give the discussion only
to show that the notion of dialgebra is quite general indeed. Let us say that a two-sorted
bialgebra is a tuple (ϕ, ψ, ϕ′, ψ′) with typing

ϕ: a † b→ a ψ: a→ a ‡ b
ϕ′: a †′ b→ b ψ′: b→ a ‡′ b .

These two-sorted bialgebras form the objects of category DiAlg((† ∆ †′) ∆ I, I ∆ (‡ ∇ ‡′)) , as
is easily verified by just unfolding the definitions. A morphism in this category is probably
just what you might wish as a morphism for two-sorted bialgebra. The most general typing
of the bifunctors reads

†, †′: A× B → A
‡, ‡′: A× B → B .

The morphisms of the category are just what you might have expected.
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3e Conclusion

Distributivity properties play an important rôle in transformational programming. The
categorical formalisation of distributivity leads to the notion of homomorphism, with a
collection of operations being a dialgebra. There are a lot of laws for dialgebras, and these
facilitate to calculate with algorithms in an algebraic way (in the sense of high school
algebra). In order to make clear the pattern or structure of an algorithm, and thus to
discover the homomorphisms involved, it is very helpful if algorithms are expressed as
compositions of functions, rather than as cascaded applications of functions to arguments.
A possible drawback is the presence of a lot of combinators that are algorithmically not
interesting, and whose only purpose is to get the arguments in the right place. As soon
as one deals with actual algorithms, rather than with general schemes with a few ϕ ’s
and ψ ’s, the amount of argument shuffling combinators may become irritatingly large; an
example of this occurs in the next chapter: transpose in Section 4c.

Initial algebras and final co-algebras turn out to be a formalisation of the intuitive
notion of datatype. The initiality (or finality) of the (co)algebras gives further laws that
facilitate to calculate with functions defined with induction on the structure of the source
algebra (or target co-algebra). The Fusion laws are quite important for efficiency im-
provement since they exploit the distributivity property of one of the functions involved.
(Interestingly, in a more general context and without efficiency considerations in mind,
the Fusion law has turned out to be an important law for calculation with functions, in
Chapter 2.)

The categorical technique of dualisation is not just a formal game, but gives results
that are relevant for practice, as demonstrated by the many examples that we have given.

Though most of the theorems of this chapter may be known, or even well-known, it is
certainly not the case that the algebraic style of calculating with algorithms is common
coin.



Chapter 4

Unique Fixed Points

Initiality of an algebra asserts that a certain type of equation has precisely one
solution, which may be called the morphism ‘defined by’ the equation. There
are more types of equations that have precisely one solution and can therefore
be characterised by laws like Charn. In some cases such laws have conse-
quences similar to the Fusion law that we know for cata- and anamorphisms
(and that is so useful for program transformation). One type of equation gives
an alternative view on the datatype; another type of equation gives mutumor-
phisms (mutually recursive definitions); a third type has solutions that we call
prepromorphisms and dually postpromorphisms.

As an aside, we derive sufficient conditions for the equality of an cata- and
anamorphism, and illustrate these by expressing a transpose function both as
a cata- and as an anamorphism.

1 Introduction. Let F be an endofunctor and α be an initial F -algebra. Initiality
of α means that the equation α ; x = Fx ; ϕ , or equivalently x = α∪ ; Fx ; ϕ, has
precisely one solution, for arbitrary F -algebra ϕ . The solution is denoted ([α → ϕ])F
or briefly ([ϕ]) . The laws cata-Charn, . . . , cata-Fusion facilitate reasoning about the
function thus defined. In practice one encounters equations that do not fit the pattern
above, yet have precisely one solution. The uniqueness means that a characterisation like
Charn is possible, hence also laws like Self and Uniq, and maybe also Id and Fusion.
These laws are useful for program transformations.

For example, Meertens [49] discusses equations of the form

α ; f = F (id ∆ f) ; ϕ .

For arbitrary ϕ of the right type this equation has a unique solution f , called the F -
paramorphism for ϕ . Interpreted in Set , operation ϕ gets not only the results of the

83
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recursive (inductive) invocations of f , but also the arguments that were passed to those
recursive invocations. As Meertens proves, and we will do so in Section 4b, paramorphisms
satisfy properties similar to those of catamorphisms; in particular a Fusion law. Moreover,
Meertens proves that each morphism with the carrier of α as source is a paramorphism.

2 Overview. We investigate three different kinds of equations. First, in Section 4a
we consider the definition of morphisms on Uα via an inductive pattern that does not
conform to α and F . Then in Section 4b we consider mutually recursive definitions, or
rather simultaneous inductive equations. The morphisms so defined generalise Meertens’
paramorphisms. Third, in Section 4d we consider schemes that differ from the catamor-
phism equation in that the recursive invocations are preceded by some ‘preprocessing’. In
the dual case the recursive invocations in the equation for anamorphisms are succeeded
by some postprocessing. As an aside, we give in Section 4c two conditions under which a
catamorphism equals an anamorphism. The law is illustrated by the equivalence proof for
a catamorphism and an anamorphism expression for a kind of array transpose.

4a Views on datatypes

In practice one often views cons lists as snoc or join lists, and vice versa. In particular one
uses both induction on the cons structure and induction on the join or snoc structure to
define functions on lists. We set out to describe this phenomenon formally, for datatypes
in general. For concreteness, however, we refer to lists. A snoc list is like a cons list; the
difference is that the ‘snoc’ operation appends an element to the other side of the list, as
suggested by its type: snoc: Ma× a →Ma . More precisely, the intended correspondence
between cons and snoc lists is suggested by

cons(a, . . . cons(z, nil))) ≈ [a, . . . , z] ≈ snoc(snoc(lin, a) . . . , z) .

Here lin: 1 →Ma denotes the empty snoc list.

3 Cons as snoc list. Let F = 1 + a× I be the usual functor for cons lists over a , and
let α = nil ∇ cons be the initial F -algebra µF , with carrier La . Suppose you want to
define functions on cons lists by induction on the snoc pattern; think of left reduces. Then
you have to define your own snoc view of cons lists, for example by defining

β ′ = nil ∇ (swap ; id × rev ; cons ; rev) : GLa→ La ,

where G is the functor for snoc lists, G = 1 + I × a , and rev : La → La is the reverse
operation. (A prime-less ‘β’ is defined later.) We do not elaborate rev here, but assume
that rev is its own inverse; compare with reverse discussed in paragraph 3.70. Having
done so, you will expect that for each G -algebra ϕ the equation

β ′ ; f = Gf ; ϕ
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has precisely one solution f , so that these equations do define functions on La . The
existence and uniqueness of a solution of the equation, for each ϕ , means that β ′ is an
initial G -algebra. To prove the initiality of β ′ , there are at least two ways.

The first method is to show directly that cata-Charn holds for β ′ , that is, there is an
expression E not containing f such that the above equation equivales f = E . The E ,
then, is the catamorphism that may henceforth be written ([β ′ → ϕ])G .

The second method is as follows. Let β be ‘the’ initial G -algebra µG , say β = lin ∇

snoc with carrier Ma . Then show that β ′ ∼=G β , that is, the unique G -homomorphism
([β → β ′])G from β to β ′ has an inverse g: β ′ →G β . We shall now spend some words on
both methods.

4 The first method. It so happens that

β ′ = nil ∇ (swap ; id × rev ; cons ; rev)
= id + swap ; id + id × rev ; nil ∇ cons ; rev
= ε ; F rev ; α ; rev

where
ε = id + swap : G ∼= F a natural isomorphism .

To show the existence and uniqueness of f in the equation β ′ ; f = Gf ; ϕ we argue

β ′ ; f = Gf ; ϕ

≡ equation for β ′

ε ; F rev ; α ; rev ; f = Gf ; ϕ

≡ existence ε∪, rev∪ (= ε, rev)

α ; rev ; f = F rev∪ ; ε∪ ; Gf ; ϕ

≡ naturality ε∪: F .→G

α ; (rev ; f) = F (rev∪ ; f) ; (ε∪ ; ϕ)

≡ cata-Charn for α , using that rev = rev∪

rev∪ ; f = ([α → ε∪ ; ϕ])F
≡ inverse rev

f = rev ; ([α → ε∪ ; ϕ])F .

Hence,

([β ′ → ϕ])G = rev ; ([α → ε∪ ; ϕ])F : La→ Uϕ .

Notice that the carrier of the initial G -algebra β ′ equals that of the initial F -algebra α .

5 The second method. For the particular case at hand it is rather easy to construct the
inverse g of ([β → β ′])G . The requirement g: β ′ →G β determines g completely:

β ′ ; g = Gg ; β

≡ argued above
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g = rev ; ([α → ε∪ ; β])F .

Having derived a candidate g , it remains to show both that it is a pre-inverse of ([β → β ′])G
and that it is a post-inverse. Thus, this method of showing the initiality of β ′ is more
involved than the previous one.

6 Isomorphic views. Except for the specific choices the discussion in paragraph 3 is
completely general. So, suppose α is an initial F -algebra, and you want to “view” α as
an initial G -algebra. Then you should define a G -algebra β ′ in terms of α having the
same carrier as α , and prove that β ′ is an initial G -algebra. As a result, the equations
β ′ ; x = Gx ; ϕ , for arbitrary G -algebra ϕ , have a unique solution x: Uα→ Uϕ .

We can also formally define a notion of isomorphism between an F -algebra and a
G -algebra, or, more generally, between dialgebras of different type. To this end define
the category DiAlg , built on the default category, as follows. An object in DiAlg is: a
triple (F, ϕ,G) where ϕ is an F,G -dialgebra. Let (F, ϕ,G) and (H,ψ, J) be objects in
DiAlg ; then a morphism from (F, ϕ,G) to (H,ψ, J) in DiAlg is: a triple (ε, f, η) where
ε: F .→H, η: G .→ J, and f : Uϕ→ Uψ is a morphism satisfying

(ϕ ; η ; Jf =) ϕ ; Gf ; η = ε ; Hf ; ψ (= Ff ; ε ; ψ) .

So defined DiAlg is a category indeed.
For the case considered above, α is an F, I -dialgebra, and β ′ = ε ; Fh ; α ; h is a

G, I -dialgebra, where h is such that h∪ exists, and ε: G ∼= F . Then α and β ′ , or rather
(F, α, I) and (G, β ′, I) , are isomorphic in DiAlg , since

(ε∪, h, id) : (F, α, I) ∼= (G, β ′, I) in DiAlg.

4b Mutumorphisms

7 Mutual recursion. The use of auxiliary functions is commonplace in programming.
Often a function or algorithm f is easily expressed by induction on the structure of
the argument, provided that some function g may be used; where g is expressed by
induction too, using f in its turn. We call such functions mutumorphisms (mutu arising
from mutually recursive). The discussion below formalises the folklore intuition that such
mutumorphisms can be expressed in terms of a single recursive function. In addition it
follows that mutumorphisms have nice calculational properties, including a Fusion law.
Specific cases arise when one or both do not really depend on the other.

8 Theorem. Let F be an endofunctor, and α be µF . Then

α ; f = F (f ∆ g) ; ϕ ∧ α ; g = F (f ∆ g) ; ψ ≡ f ∆ g = ([ϕ ∆ ψ]) Mutu

For this to make sense it is required that ϕ: F (a×b)→ a, ψ: F (a×b)→ b, f : Uα→ a,
and g: Uα→ b for some a, b .
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Notice that (ϕ, ψ) is a two-sorted F ◦(×) -algebra, and so is (α, α) . But it is type-incorrect
to claim that (f, g) is an F ◦ (×) -homomorphism. The proof of the theorem is simple.

α ; f = F (f ∆ g) ; ϕ ∧ α ; g = F (f ∆ g) ; ψ

≡ product

(α ; f) ∆ (α ; g) = (F (f ∆ g) ; ϕ) ∆ (F (f ∆ g) ; ψ)

≡ product

α ; f ∆ g = F (f ∆ g) ; ϕ ∆ ψ

≡ cata-Charn

f ∆ g = ([ϕ ∆ ψ]).

9 Mutu laws. Since the theorem asserts that the tupling of mutumorphisms is a cata-
morphism, there is a characterisation of mutumorphisms (the theorem!), and hence also
several derived laws. A specific notation may make it more clear. For F and ϕ, ψ as in
the theorem, the left, right and tupled mutumorphism is:

[[ϕ, ψ]]0 = ([ϕ ∆ ψ]) ; exl
[[ϕ, ψ]]1 = ([ϕ ∆ ψ]) ; exr
[[ϕ, ψ]] = [[ϕ, ψ]]0 ∆ [[ϕ, ψ]]1 = ([ϕ ∆ ψ]) .

Then, putting ϕ0,1 = ϕ0, ϕ1 , the following laws are immediate corollaries of the theorem
and the laws for catamorphisms.

α ; xi = F (x0 ∆ x1) ; ϕi (i=0,1) ≡ xi = [[ϕ0,1]]i (i=0,1) mutu-Charn

α ; [[ϕ0,1]]i = F [[ϕ0,1]] ; ϕi (i=0,1) mutu-Self

id = [[F exl ; α, F exr ; α]]i (i=0,1) mutu-Id

α ; xi = F (x0 ∆ x1) ; ϕi (i=0,1)

α ; yi = F (y0 ∆ y1) ; ψi (i=0,1)

}
⇒ xi = yi (i=0,1) mutu-Uniq

ϕ0 ∆ ϕ1 ; f = Ff ; ψ0 ∆ ψ1 ⇒ [[ϕ0,1]] ; f = [[ψ0,1]] mutu-Fusion

10 Specialisations. Substituting ψ = F exr ; χ for some F -algebra χ in Theorem 8
gives the special case that f may still depend on g , and g does not depend on f and,
in fact, g is a catamorphism itself:

α ; g = F (f ∆ g) ; F exr ; χ
≡
α ; g = Fg ; χ

≡
g = ([χ]).

Malcolm [42] investigates such f, g and calls f the F -zygomorphism for ϕ, χ . Taking in
particular χ = α gives g = ([α]) = id , and the resulting f is called the F -paramorphism
for ϕ by Meertens [49].

[[ϕ, F exr ; χ]]0 is Malcolm’s zygomorphism (ϕ, χ)\
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[[ϕ, F exr ; α]]0 is Meertens’ paramorphism [[ϕ]]

(In paragraph 3.51 we have discussed the paramorphism preds .) In case f does not
depend on g either, by substituting ϕ := F exl ; ϕ for some F -algebra ϕ , the theorem
asserts that the tupling of catamorphisms is a catamorphism itself:

([ϕ]) ∆ ([ψ]) = ([(F exl ; ϕ) ∆ (F exr ; ψ)]) = ([abideF ; ϕ× ψ]) Banana Split

where abideF = F exl ∆ F exr . (We call this operation abideF since for F = II it is the
natural transformation that occurs in the equation expressing the abide property. Jaap van
der Woude coined the name banana brackets for ([ ]) and split for ∆ . Lambert Meertens
put them together in juxtaposition to name this law.)

It is quite remarkable that these results are so easily proved in a categorical setting,
whereas in the relational setting —where ∆ is not the categorical product— the proofs are
quite complicated, and Theorem 8 is even false; cf. Voermans and Van der Woude [73].

4c Equal cata- and anamorphisms

There are several conditions under which a catamorphism can be expressed as an anamor-
phism, and vice versa. We present two such conditions, and illustrate one of them by
proving the equality of two ways to express a certain kind of array transpose.

11 Unique fixed points. Both an anamorphism and a catamorphism is the solution
of a certain kind of fixed point equation. In order to study both kinds of equations at the
same time, we abstract from the particular form, and consider morphism mappings F for
which the equation x = Fx has a unique solution. We use the notation [[F ]] for the unique
solution of x = Fx , assuming that it exists. So [[F ]] is characterised by ufp-Charn below,
and hence satisfies the two other laws as well.

x = Fx ≡ x = [[F ]] ufp-Charn

[[F ]] = F [[F ]] ufp-Self

x = Fx ∧ y = Fy ⇒ x = y ufp-Uniq

As an example, let F be an endofunctor, α be µF , and ϕ be an F -algebra. Take
Fx = α∪ ; Fx ; ϕ. Then, by ufp- and cata-Charn, [[F ]] exists and equals ([ϕ])F . Similarly,
if G is an endofunctor, β = νG , and ψ is a G -co-algebra, then taking Gx = ψ ; Gx ; β∪

yields [[G]] = db(ψ)ecG .
We shall now investigate conditions for [[F ]] = [[G]] , without prescribing the form of

F or G . So by suitable instantiations of F and G there result conditions not only for
the equality of a cata- and an anamorphism, but also for two catamorphisms and for two
anamorphisms.

12 Theorem. Suppose [[F ]] and [[G]] exist. Then F = G ⇒ [[F ]] = [[G]] .
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The theorem is just a triviality. However, it has an interesting corollary:

ε: F .→G ⇒ ([ε ; β∪])F = db(α∪ ; ε)ecG cata-ana-Eq

Taking Fx = α∪ ; Fx ; ε ; β∪ and Gx = α∪ ; ε ; Gx ; β∪, law cata-ana-Eq follows from the
trivial theorem:

([ε ; β∪])F = db(α∪ ; ε)ecG
≡ definition F and G

[[F ]] = [[G]]

⇐ theorem (!)

F = G
≡ extensionality

α∪ ; Ff ; ε ; β∪ = α∪ ; ε ; Gf ; β∪ for all f

⇐ Leibniz

ε: F .→G.

Let us consider a less trivial theorem.

13 Theorem. Suppose [[F ]] exists, and G has at most one fixed point. Then

F G = G F ⇒ [[G]] exists, and equals [[F ]] .

Proof. We show that [[F ]] is a fixed point of G .

[[F ]] = G[[F ]]

≡ ufp-Charn[F , x := F ,G[[F ]] ]

G[[F ]] = F G[[F ]]

≡ premise

G[[F ]] = G F [[F ]]

⇐ Leibniz, ufp-Self

true.

Since G has at most one fixed point, [[F ]] is the unique one. 2

Taking Fx = α∪ ; Fx ; ϕ and Gx = ψ ; Gx ; β∪ the theorem specialises to

∀f :: α∪ ; F (ψ ; Gf ; β∪) ; ϕ = ψ ; G(α∪ ; Ff ; ϕ) ; β∪14

⇒ ([ϕ])F = db(ψ)ecG cata-ana-Eq2

I see no way to simplify the condition in a useful way. The instantiation f = id in the
premise gives the necessary condition

α∪ ; F (ψ ; β∪) ; ϕ = ψ ; G(α∪ ; ϕ) ; β∪.

Law cata-ana-Eq 12 is a specialisation of 14; this also follows from the fact that Theorem 12
is a special instance of Theorem 13. Law cata-ana-Eq2 is used in the application that now
follows.
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Application: transpose

15 Preliminaries. We shall define a function transp that maps a cons list of streams
onto a stream of cons lists. So first of all recall the definitions and nomenclature for cons
lists and streams.

nil ∇ cons = α : I † L .→ L where a† = 1 + a× I

hd ∆ tl = β : S .→ I ‡ S where ‡ = × .

Function transpa is to have type LSa→ SLa , and actually transp: LS .→ SL .
I have taken ‡ = × instead of ‡ = † to simplify the formulas. Replacing † by ×

would also simplify matters, but too much: in Set the initial a× -algebra is the trivial
identity function on the empty set.

Second, we define two variations of abide and mention some laws for them. For arbitrary
F and † ,

abideF = F exl ∆ F exr
abide† = (exl † exl) ∆ (exr † exr) = abideI†I
coabideF = F inl ∇ F inr .

These three definitions imply, amongst others,

Ff ∆ Fg = F (f ∆ g) ; abideF Abide

(f † g) ∆ (h † j) = (f ∆ h) † (g ∆ j) ; abide† biAbide

Ff ∇ Fg = coabideF ; F (f ∇ g) coAbide

Third, recall the following from paragraphs 3.65 and 3.66:

nils = idω ; S nil
zip = db(II(hd ∆ tl) ; abideII)ec
zipwith-f = zip ; Sf .

16 Defining transpose. Looking at the source type of transpa: LSa → SLa it is
obvious to try and express transpose as a catamorphism. We start with an expression that
formalises our intuition about transpose.

nil ; transp ′ = nils

cons ; transp ′ = idSa × transp ′ ; zipwith-cons

≡ sum, definition f † g = id + f × g
nil ∇ cons ; transp ′ = idSa † transp ′ ; nils ∇ zipwith-cons

≡ definition nil ∇ cons = α , cata-Charn
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transp ′ = ([nils ∇ zipwith-cons])Sa†
≡ definition nils and zipwith

transp ′ = ([(idω ; Snil) ∇ (zip ; Scons)])Sa†
≡ sum

transp ′ = ([idω + zip ; Snil ∇ Scons])Sa†
≡ coAbide, nil ∇ cons = α

transp ′ = ([idω + zip ; coabideS ; Sα])Sa†.

Adding the typing and using an auxiliary ϕ we have

transp ′ = ([ϕ])Sa† : LSa→ SLa
ϕ = nils ∇ zipwith-cons : Sa † SLa→ SLa

= idω + zip ; coabideS ; Sα .

The target type of transp , however, suggests to try and express transpose as an anamor-
phism. Again, the top line formalises our intuition about transpose; we shall later prove
that the intuition here is consistent with the one expressed above.

transp ′′ = Lhd ∆ (Ltl ; transp ′′) ; (hd ∆ tl)∪

≡ invertibility β = hd ∆ tl , product

transp ′′ ; β = Lhd ∆ Ltl ; idLa × transp ′′

≡ ana-Charn interchanging left and right hand side, ‡ = ×
transp ′′ = db(Lhd ∆ Ltl)ecLa‡

≡ Abide, hd ∆ tl = β

transp ′′ = db(Lβ ; abideL)ecLa‡.

Adding the typing and using an auxiliary ψ we have

transp ′′ = db(ψ)ecLa‡ : LSa→ SLa
ψ = L hd ∆ L tl : LSa→ L ‡ LSa

= Lβ ; abideL .

17 Some typing. Here are some assertions concerning naturality of various object-
parametrised morphisms. I shall not prove nor use any of these claims (say ε: F .→G ) as
regards the equalities that they embody (namely Ff ; εb = εa ; Gf for each f : a → b ),
simply because I see no opportunity to use these. What I do use, implicitly, is the claims
about the parametrised typing of the parametrised morphisms (namely εa: Fa→ Ga for
each a ).

transp : LS .→ SL
nils : 1 .→ SL
zipwith-f : Sa× Sb→ Sc for f : a× b→ c

: SF × SG .→ SH for f : F ×G .→H
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zip : SX × SY .→ S(X × Y )
abideII : (W ×X)× (Y × Z) .→ (W × Y )× (X × Z) ,

where for readability we have used the abbreviations W,X, Y, Z = Ex 4,0,Ex 4,1,Ex 4,2,Ex 4,3

in the typing of abideII , and X, Y = Exl ,Exr in the typing of zip .

18 Preparation. By way of preparation we transform the definitions of transp ′ and
transp ′′ somewhat. The aim, here, is to get an elegant form, fully expressed in α, β and
†, ‡ , before we start the proof of the rather complicated premise of cata-ana-Eq2.

For ψ we recognise the opportunity to apply the Banana Split law.

ψ

= definition

Lhd ∆ Ltl

= definition sumtype functor

([hd † id ; α]) ∆ ([tl † id ; α])

= Banana Split

([abideSa† ; (hd † id ; α)× (tl † id ; α)])

= definition abideF = F exl ∆ F exr , functor

([(id † exl) ∆ (id † exr) ; (hd † id)× (tl † id) ; α× α])

= product, definition ‡ = ×
([(hd † exl) ∆ (tl † exr) ; α ‡ α])

= { for elegance: aim at combining hd and tl into β }
biAbide

([(hd ∆ tl) † (exl ∆ exr) ; abide† ; α ‡ α])

= definition β = hd ∆ tl , product: exl ∆ exr = id

([β † id ; abide† ; α ‡ α]).

For ϕ we first consider nils and zipwith-cons separately.

nils

= definition nils

idω ; Snil

= definition iterate ω in paragraphs 3.48–49

db(split ; id ‡ id)ec ; Snil

= ana-type-Fusion, product

db(nil ∆ id)ec.
We abbreviate zipwith-cons to zip ′ , and remember from paragraph 3.65

zip′ = db(IIβ ; abideII ; cons × id)ec .
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Big surprise, for ϕ the dual of Banana Split is applicable! We calculate an elegant
expression as follows.

ϕ

= definition

nils ∇ zip′

= above expressions for nils and zip ′

db(nil ∆ id)ec ∇ db(IIβ ; abideII ; cons × id)ec
= dual of Banana Split (Anaba junc?)

db((nil ∆ id) + (IIβ ; abideII ; cons × id) ; coabideLa‡)ec
= { for elegance: aim at combining nil and cons into α } . . . goal (∗)

definition coabideF = F inl ∇ F inr , sum

db((nil ∆ id ; id ‡ inl) ∇ (IIβ ; abideII ; cons × id ; id ‡ inr))ec
= definition ‡ = × , product

db((nil ∆ inl) ∇ (IIβ ; abideII ; cons × inr))ec
= definition β = hd ∆ tl , law Abide with F, f, g := II, hd , tl

db((nil ∆ inl) ∇ (IIhd ∆ IItl ; cons × inr))ec
= product

db((nil ∆ inl) ∇ ((IIhd ; cons) ∆ (IItl ; inr)))ec
= ∆ and ∇ abide, see paragraph 2.15

db((nil ∇ (IIhd ; cons)) ∆ (inl ∇ (IItl ; inr)))ec
= sum

db((id + IIhd ; nil ∇ cons) ∆ (id + IItl ; inl ∇ inr))ec
= definition nil ∇ cons = α , identity inl ∇ inr = id

db((id + IIhd ; α) ∆ (id + IItl ; id))ec goal (∗) achieved

= { for elegance: aim at combining hd and tl into β } . . . goal (∗∗)
product

db((id + IIhd) ∆ (id + IItl) ; (α× id))ec
= definition † and ‡
db((hd † hd) ∆ (tl † tl) ; α ‡ id)ec

= law biAbide

db((hd ∆ tl) † (hd ∆ tl) ; abide† ; α ‡ id)ec
= definition β = hd ∆ tl

db(β † β ; abide† ; α ‡ id)ec. goal (∗∗) achieved

The expressions that we have derived for ϕ and ψ are quite symmetrical:
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ϕ = db(ϕ′)ec where ϕ′ = β † β ; abide† ; α ‡ id
ψ = ([ψ′]) where ψ′ = β † id ; abide† ; α ‡ α

so that
transp ′ = ([ϕ]) = ([db(ϕ′)ec])
transp ′′ = db(ψ)ec = db(([ψ′]))ec .

This came as a big surprise, though, in retrospect, some symmetry is to be expected. Laws
cata- and ana-Self give recursive equations for ϕ and ψ .

ϕ = β † β ; abide† ; α ‡ id ; id ‡ ϕ ; β∪19
ψ = α∪ ; id † ψ ; β † id ; abide† ; α ‡ α.20

21 The proof. We are now ready to prove

transp ′ = ([ϕ])Sa† = db(ψ)ecLa‡ = transp′′ .

To this end we use law cata-ana-Eq2 14 with

Ff = α∪ ; idSa † f ; ϕ
Gf = ψ ; idLa ‡ f ; β∪.

So, the proof obligation is:

FGf = GFf

for arbitrary f . Some intuitive understanding is provided by interpreting this equation at
the point level. That is done in paragraph 22. Here is the formal proof.

GFf = FGf
≡ definition F and G
ψ ; id ‡ (α∪ ; id † f ; ϕ) ; β∪ =

α∪ ; id † (ψ ; id ‡ f ; β∪) ; ϕ

≡ equations 19 and 20 derived for ϕ and ψ

α∪ ; id † ψ ; β † id ; abide† ; α ‡ α ; id ‡ (α∪ ; id † f ; ϕ) ; β∪ =

α∪ ; id † (ψ ; id ‡ f ; β∪) ; β † β ; abide† ; α ‡ id ; id ‡ ϕ ; β∪

⇐ functor, Leibniz

β † id ; abide† ; α ‡ α ; id ‡ α∪ ; id ‡ (id † f) =

id † (id ‡ f) ; id † β∪ ; β † β ; abide† ; α ‡ id

≡ functor, inverse

β † id ; abide† ; α ‡ (id † f) =

β † (id ‡ f) ; abide† ; α ‡ id

≡ definition abide† = (exl † exl) ∆ (exr † exr) , definition ‡ = ×
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β † id ; (exl † exl) ∆ (exr † exr) ; α× (id † f) =

β † (id × f) ; (exl † exl) ∆ (exr † exr) ; α× id

≡ product: f ; g ∆ h ; j × k = (f ; g ; j) ∆ (f ; h ; k)

(β † id ; exl † exl ; α) ∆ (β † id ; exr † exr ; id † f) =

(β † (id × f) ; exl † exl ; α) ∆ (β † (id × f) ; exr † exr ; id)

⇐ functor, Leibniz

id ; exl = id × f ; exl ∧ id ; exr ; f = id × f ; exr

≡ product

true.

This completes the proof that transp ′ = transp ′′ .

22 Interpretation. Here is some interpretation of the proof obligation of law cata-ana-
Eq2 for the case considered above. We shall not use this in any way. Formulated at the
point level the proof obligation says amongst others the following.

Recall that ϕ = zip ′ = zipwith-cons and ψ = Lhd ∆Ltl . Let x be an arbitrary
nonempty cons list of streams, and consider the following two different ways of
composing and decomposing x .

s

ψ

l′ x′
cons

= x =

s′

ψ

l x′
cons

α∪ ; id † ψ: x 7→ inr(s, (l′, x′)), x = cons(s, y) ψ y = (l′, x′)
ψ ; id ‡ α∪: x 7→ (l, inr(s′, x′)), ψ x = (l, z) z = cons(s′, x′) .

Let f : x′ 7→ x′′ so that

id † (id ‡ f): inr(s, (l′, x′)) 7→ inr(s, (l′, x′′))
id ‡ (id † f): (l, inr(s′, x′)) 7→ (l, inr(s′, x′′)) .

Let u, u′ be the values that are composed and decomposed as follows.

s

β∪

l′ f x′
zip ′

= u, u′ =

s′

β∪

l f x′
zip ′
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id † β∪ ; ϕ: inr(s, (l′, x′′)) 7→ u, (l′, x′′) = β v zip ′ (s, v) = u
id ‡ ϕ ; β∪: (l, inr(s′, x′′)) 7→ u′, zip ′ (s′, x′′) = w (l, w) = β u′ .

Then u = u′ .

For the formal proof above such an interpretation is neither needed nor useful.

4d Prepromorphisms

A prepro-equation is a recursion scheme that differs from the scheme for catamorphisms in
that the recursive calls are preceded by some preprocessing. There exist simple sufficient
conditions under which such an equation has a unique solution. The solution, if it exists,
is termed a prepromorphism. An important prepromorphism is the so-called f -cascade.
Of course, dualisation applies here; it provides the solution to the problem of proving the
equivalence of two ways of defining f -iterate.

The proof technique may be of greater importance than the particular theorem for
which it is used here; it uses infinite tuplings of morphisms.

23 Introduction: cascade. Let α,M = sumtype(†) . For given f : a → a the f -
cascade, denoted f ./ , is defined by

f ./ = ([id †Mf ; α])a† : Ma→Ma .

Bird calls it supermap- f . Taking † to be the functor for cons lists and interpreting in
Set , the definition reads

f ./ [a0, a1, . . . , an−1] = [f 0a0, f
1a1, . . . , f

n−1an−1]

where f i = f ; f ; . . . ; f ( i occurrences of f ). Do not confuse f -cascade with the
f -iterate fω of type a → Sa which was discussed in paragraph 3.48. Also, recall type-
cata-Fusion:

([f † id ; ϕ]) = Mf ; ([ϕ])

and observe that it is not applicable to f -cascade.

24 A problem. By cata-Charn f -cascade is the unique solution for x of

x = α∪ ; F (x ; Mf) ; α.

Now consider the slightly changed equation

y = α∪ ; F (Mf ; y) ; α.

Is f -cascade also the unique solution for y ? Since it is easily verified that

Mf ; f ./ = f ./ ; Mf ,

it suffices to show that there is at most one solution y . Below we shall generalise the
problem and abstract from the particular morphisms occurring in these equations. This
particular problem is then answered in the affirmative in paragraph 36.
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25 Generalisation: prepromorphism. Let F be arbitrary and α be µF . Let
ϕ: Uα→ Uα and ψ be an F -algebra. Consider the following equation in x

x = α∪ ; F (ϕ ; x) ; ψ.

We call this equation a prepro-equation. To consider when it has a unique solution, let
us reason informally in Set and for polynomial functors only. When ϕ is the identity,
the argument to the recursive call is a subvalue, a proper constituent, of the original
argument. Therefore, intuitively, the outcome of x is completely determined and well-
defined by induction on the argument value: x equals ([ψ]) . (In Set and for polynomial
F , any value in Uα is constructed by repeated, finitely many, applications of α .) Now
suppose that ϕ differs from id but still preserves “the structure,” in the same way as a
‘map’ preserves the structure of its argument, and, on lists, any function that does not
change the length. Then it is reasonable to expect that the equation has a unique solution,
since at the recursive call in the right-hand side the argument structure is a substructure of
the original argument, and so by induction on the structure of the argument (rather than
on the value of the argument) x ’s outcome is completely determined and well-defined.

Even more generally, the above reasoning applies if ϕ has the property that for each
argument t , viewed as a ‘term’ in α , the “complexity” of ϕ(t) is at most that of t . For
instance, a left linear binary tree may be transformed by ϕ into a right linear tree, so that
the structure of the tree is changed but its “complexity” isn’t. For lack of a better name
we call the desired property of ϕ ‘structure preservation’.

26 Structure preservation. One attempt to formalise “structure preservation” is:

ϕ preserves the † -shape ≡ ϕ ; shape = shape

where α,M = sumtype(†) and shapea = M !a ( !a being the unique morphism from a
into 1 ). For example, each map Mf preserves the † -shape, as shown in paragraph 3.62.
However, this definition applies only to bifunctors and not to monofunctors in a sensible
way. For suppose monofunctor F is given and bifunctor † is subsequently defined by
x † y = Fy , so that F = a† . Then shape = M ! = ([! † id ; α]) = ([α]) = id , and so only
the identity morphism preserves the † -shape.

Another attempt, and at present the best I can think of, is this:

ϕ preserves the F -structure ≡ ϕ = ([ε ; α]) for some ε: F .→ F ,

where α = µF . The definition is partly proof-generated and partly suggested by intuition;
in particular the right hand side says

ϕ = α∪ ; Fϕ ; ε ; α.

The following facts show the generality of the definition.

Facts
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27 For ε: F .→ F , we have ([ε ; α]) = Mu ε (where Mu is the functor discussed in para-
graph 3.68 on the factorisation of type functors).

28 Structure preservation is closed under composition.

29 Let -,M = sumtype(†) and f : a→ a . Then Mf preserves the a† -structure.

30 (Originally, I had two erroneous examples here: reverse and rotate . . . )

Since we won’t use these facts, we omit the proofs. I know of no a† -structure preserving
morphisms other than those mentioned in Fact 29 that preserve the † -shape as well.

Characterisation and Fusion

We shall now prove the uniqueness and existence of a solution to the prepro-equation, called
prepromorphism. (I owe the proof of the existence to Lambert Meertens.) We present
also some corollaries of the uniqueness. Throughout the sequel we work in an arbitrary
category which has enumerable products; the countably infinite tupling f0 ∆ f1 ∆ . . . is
written ∆n :: fn , and the extractions (projections) are denoted exn . Endofunctor F is
arbitrary, and we assume that an initial algebra α = µF exists.

31 Theorem. Let ε: F .→ F , let ψ be an F -algebra, and put ϕ = ([ε ; α]) . Then

x = α∪ ; F (ϕ ; x) ; ψ ≡ x = ([∆n :: F exn+1 ; εn ; ψ]) ; ex 0 prepro-Charn

where n denotes n -fold composition.

Proof. First we shall prove the implication to the right. Define for all n

ψn = εn ; ψ
ψ′n = F exn+1 ; εn ; ψ

Assume that a solution x0 exists. Define a sequence (n :: xn) by induction on n :

xn+1 = ϕ ; xn .

By induction on n we show that for all n

xn = α∪ ; Fxn+1 ; ψn.(?)

Basis: immediate by definition of x1 and ψ0 , and assumption on x0 .
Step: we calculate

xn+1

= definition xn+1

ϕ ; xn

= induction hypothesis



4d. Prepromorphisms 99

ϕ ; α∪ ; Fxn+1 ; ψn

= definition ϕ and cata-Self

α∪ ; Fϕ ; ε ; Fxn+1 ; ψn

= naturality ε , functoriality F

α∪ ; F (ϕ ; xn+1) ; ε ; ψn

= definition xn+2 and by definition ψn+1 = ε ; ψn

α∪ ; Fxn+2 ; ψn+1.

This completes the proof of (?). Hence, for each n ,

xn

= just proved: equation (?)

α∪ ; Fxn+1 ; ψn

= product

α∪ ; F ((∆n :: xn) ; exn+1) ; ψn

= functor

α∪ ; F (∆n :: xn) ; F exn+1 ; ψn

= by definition ψ′n = F exn+1 ; ψn

α∪ ; F (∆n :: xn) ; ψ′n

showing that (n :: xn) is a collection of mutumorphisms that we have discussed in Sec-
tion 4b. So, by the mutumorphism Theorem 8, or directly by the observation that

(∆n :: xn) = α∪ ; F (∆n :: xn) ; (∆n :: ψ′n),

all the x’s together form a catamorphism:

(∆n :: xn) = ([∆n :: ψ′n])
hence

x0 = ([∆n :: ψ′n]) ; ex 0 .

In summary, if a solution x0 exists, then it is uniquely determined by the above equation.
Second, we show that ([∆n :: ψ′]) ; ex 0 is a solution indeed. Putting y0 = ([∆n :: ψ′n]) ;

ex 0 and yn+1 = ϕ ; yn it is easy to show

y0 = α∪ ; F (ϕ ; y0) ; ψ
⇐

y1 = α∪ ; F (ϕ ; y1) ; ψ
⇐

y2 = α∪ ; F (ϕ ; y2) ; ψ...
But, unfortunately, this does not show that y0 solves the equation. A better argument
is needed; the following one has been designed by Lambert Meertens. We abbreviate
(∆n :: exprn) to ∆exprn .

y0 = α∪ ; F (ϕ ; y0) ; ψ

≡ definition y0 , and bring α to the left-hand side
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α ; ([∆ψ′n]) ; ex 0 = F (ϕ ; ([∆ψ′n]) ; ex 0) ; ψ

≡ lhs: cata-Self;(?)

rhs: equation ϕ ; ([∆ψ′n]) = ([∆ψ′n]) ; ∆exn+1 proved below

F ([∆ψ′n]) ; ∆ψ′n ; ex 0 = F (([∆ψ′n]) ; ∆exn+1 ; ex 0) ; ψ

⇐ functor, Leibniz

∆ψ′n ; ex 0 = F (∆exn+1 ; ex 0) ; ψ

≡ product

ψ′0 = F ex 1 ; ψ

≡ definition ψ′0
true.

The equation used at step (?) is the crux of the proof. We prove it as follows, abbreviating
∆exn+1 (= ∆n :: exn+1 ) to shift .

([∆ψ′n]) ; shift = ϕ ; ([∆ψ′n])

≡ definition ϕ , cata-Compose 26 (noting ε: F .→ F )

([∆ψ′n]) ; shift = ([ε ; ∆ψ′n])

⇐ cata-Fusion

∆ψ′n ; shift = F shift ; ε ; ∆ψ′n
≡ at both sides ∆ -Fusion: f ; ∆gi = ∆(f ; gi)

∆((∆ψ′n) ; exn+1) = ∆(F shift ; ε ; ψ′n)

≡ law: ∆fi = ∆gi ≡ (for all i: fi=gi) .

For all n :

(∆ψ′n) ; exn+1 = F shift ; ε ; ψ′n
≡ lhs: product, rhs: definition ψ′n = F exn+1 ; εn ; ψ and naturality ε

ψ′n+1 = F shift ; F exn+1 ; εn+1
; ψ

≡ lhs: definition ψ′n+1 , rhs: functor and shift ; exn+1 = exn+2

true.

This completes the proof. 2

32 Corollary. Let ε: F .→ F and ψ0, ψ1 be F -algebras. Let p0 and p1 be the
F -prepromorphisms determined by ε, ψ0 and ε, ψ1 respectively. Then

ψ0 ; f = Ff ; ψ1 ⇒ p0 ; f = p1 prepro-Fusion

The proof is a standard calculation.
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33 Variations. There are many more schemes for which the above proof technique
may show that the prepro-version has a unique solution if the naked version has so. In
particular, a “prepro-paramorphism” equation does have a unique solution.

The characterisation theorem gives the unique solution of a prepromorphism equation.
This solution has not the form of a catamorphism. With some extra conditions it does.

34 Theorem. Let ε: F .→ F and ψ: Fa → a be arbitrary, and put ϕ = ([ε ; α]) .
Furthermore, let χ: a→ a be arbitrary, and put f = ([Fχ ; ψ]) . Then

x = α∪ ; F (ϕ ; x) ; ψ ≡ x = f prepro-cata-Charn

provided that ϕ ; f = f ; χ , which in turn follows from χ: ψ →F ε ; ψ .

Proof. From the definition of f it follows by cata-Charn that

f = α∪ ; F (f ; χ) ; ψ

and with f ; χ = ϕ ; f in addition it is immediate that f solves the equation for
x . By prepro-Charn f is then the unique solution. Notice that only the uniqueness
part of prepro-Charn is used. Finally, we derive the sufficient condition for the proviso
f ; χ = ϕ ; f as follows.

f ; χ = ϕ ; f

≡ definition f and ϕ

([Fχ ; ψ]) ; χ = ([ε ; α]) ; ([Fχ ; ψ])

≡ rhs: cata-Compose 26 noting that ε: F .→ F

([Fχ ; ψ]) ; χ = ([ε ; Fχ ; ψ])

⇐ cata-Fusion

χ: Fχ ; ψ →F ε ; Fχ ; ψ

≡ naturality ε

χ: Fχ ; ψ →F Fχ ; ε ; ψ

⇐ homo-Adhoc 3.24 (or: fold and unfold →F )

χ: ψ →F ε ; ψ

as desired. 2

With ϕ, ψ, χ as in the theorem, it is not necessarily true that for all f , the equation
f ; χ = ϕ ; f holds. If the equation were to hold for all f , then in particular id ; χ = ϕ ; id
so that χ = ϕ . In the case of f -iterate in paragraph 37 below χ differs from ϕ .

Straightforward dualisation gives a characterisation of postpromorphisms. (Recall that
formula f : ϕ >−F ψ means ϕ ; Ff = f ; ψ , thus dualising f : ϕ →F ψ .) Let α = νF ,
the final F -co-algebra, assuming it exists.

35 Corollary. Let ε: F .→ F , let ψ be an F -co-algebra, and put ϕ = db(α ; ε)ec . Then

x = ψ ; F (x ; ϕ) ; α∪ ≡ x = db(ψ ; Fχ)ec postpro-ana-Charn

provided that χ ; db(ψ ; Fχ)ec = db(ψ ; Fχ)ec ; ϕ , which in turn follows from χ: ψ ; ε >−F ψ .
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36 Application: cascade. Recall the equations from paragraph 24 that triggered the
notion of prepromorphism and the search for its characterisation:

f ./ = α∪ ; F (f ./ ; Mf) ; α
y = α∪ ; F (Mf ; y) ; α

where α,M = sumtype(†) , and F = a† and f : a→ a . Taking

ε = f † id : a† .→ a†
ϕ = χ = Mf = ([ε ; α]) ,

law prepro-cata-Charn says that f ./ is the unique solution for y .

37 Application: iterate. Let α,M = prodtype(†) . Recall from paragraphs 3.48,49,50
the definition of fω , for f : a→ a , and consider also the postpro-equation in x :

fω = split † ; F (f ; fω) ; α∪ : a→Ma
x = split † ; F (x ; Mf) ; α∪,

where F = a† and split † is some natural transformation typed split †: I .→ I † I . For
example, take † = × ; then α is the final co-algebra of streams and

split× = split = id ∆ id : I .→ I × I = I .→ II .

Let us prove that fω is the unique solution of the equation in x . The two equations have
the form

fω = ψ ; F (χ ; fω) ; α∪

x = ψ ; F (x ; ϕ) ; α∪,
where

ψ = split † : a→ a † a
χ = f : a→ a
ϕ = Mf = db(α ; ε)ec : Ma→Ma
ε = f † id : a† .→ a† .

Notice that the case considered here is not the dual of f -cascade; in particular ϕ differs
from χ . By law postpro-ana-Charn fω is the unique solution for x provided that the
condition of the law is satisfied. This is easily shown.

χ : ψ ; ε >−F ψ

≡ definition χ, ψ, ε, F

f : split † ; f † id >−a† split†
≡ definition >−

split † ; f † id ; id † f = f ; split †
≡ functor, naturality split †

true
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4e Conclusion

We have investigated several forms of equations that are similar to the equations for ana-
and catamorphisms, and that have unique solutions. Such an equations may be used to
define an algorithm, namely as the unique solution. In practice these kind of definitions are
used indeed; in particular the mutumorphisms (algorithms defined by simultaneous induc-
tion) occur often, and also the prepro(cessing) and postpro(cessing) variations of inductive
definitions seem quite natural. A Fusion law happens to be valid for the algorithms so
defined, thus facilitating to exploit distributivity properties in the derivation of alternative
(possibly more efficient) algorithms for the same function. The Banana Split law is a
far reaching generalisation of phenomena like “loop fusion,” which is also quite relevant
for efficiency improvement.

Some of the alternative induction schemes for defining algorithms are simply a change
of view on the datatype involved. There are various ways in which one can look at a cons
list, and each of the views brings forth a way to define algorithms on the datatype of cons
lists. We have formally described the proof obligations when this technique is applied.

As an aside in this chapter we have investigated conditions under which an algorithm
can be expressed both as an anamorphism and as a catamorphism. To illustrate this we
have proved the equality of two ways of defining a transpose (from a cons list of streams
into a stream of cons lists). The case study shows several aspects that need further im-
provement and investigation (in our opinion): there seems to be ample opportunity for
machine assistence in the calculations, it seems that the naturality properties of the ingre-
dients can be exploited more than we have done, and the avoidance of a “combinatorial
explosion” needs further attention (in previous proof attempts there were too many steps
that expressed too little each, whereas their combined result was too much for one step).
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Chapter 5

Datatype Laws without Signatures

Using the well-known categorical notion of ‘functor’ one may define the concept
of datatype (algebra) without being forced to introduce a signature, that is,
names and typings for the individual sorts (types) and operations involved.
This has proved to be advantageous for those theory developments where one
is not interested in the syntactic appearance of an algebra.

The newly developed categorical notion of ‘transformer’ allows the same ap-
proach to laws: without using signatures one can define the concept of law
for datatypes (lawful algebras), and investigate the equational specification of
datatypes in a syntax-free way. A transformer is a special kind of functor and
also a natural transformation on the level of dialgebras. Transformers are quite
expressive, satisfy several closure properties, and are related to naturality and
Wadler’s Theorems For Free. In fact, any colimit is an initial lawful algebra.

5a Introduction

1 The problem. Most mathematical formalisations of the intuitive notion of ‘datatype’
define that notion as a (many-sorted) algebra, possibly provided with some (conditional)
equations, which we call ‘laws’. Such algebras themselves are often formalised with help of
the notion of ‘signature’ or, more categorically and slightly more abstract, with the notion
of ‘sketch’ as described by Barr and Wells [7]. A signature gives the syntactic appearance of
the algebra; it gives the names of the sorts (types), the names and arities of the operations
and constants, and for each operation a syntactic indication of the types of its arguments
and result. No doubt, signatures are indispensable for large-scale programming tasks, and a
theory that deals with signatures may be quite useful. Such a theory contains theorems on
aspects of name-clashes, renaming, scope rules, persistency and so on. However, sometimes

105
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we would like to be able to abstract from syntactic aspects, for example, when investigating
the existence of certain kinds of algebras, or the (semantic) relations between algebras. In
fact, one should abstract from naming even in the definition of such basic concepts as
‘homomorphism’. For the lawless case this is possible indeed, thanks to the notion of
functor. A functor characterises the type structure of an algebra without naming the sort
or any of the operations involved. Functors satisfy just one or two very simple axioms,
and —almost unbelievable— that is all that is needed to develop a large body of useful
theorems about algebras. The problem for which we propose a solution, is the following.

Formalise the notion of ‘law’ (an equation or conditional equation for the oper-
ations of an algebra) without introducing signatures, in particular naming and
setting up a syntax of terms.

Remarkably, in all texts where functors are used to characterise algebras, signatures (or
sketches) are introduced when it comes to laws. Clearly, this is a hindrance to theory
development, since it forces to deal with aspects (syntax) that should have been abstracted
from. About the use of functors to describe algebras Pierce [60, remark 2.2.3] explicitly
says:

The framework has apparently never been extended to include algebras with
equations.

2 The solution. We shall propose a categorical description of ‘law’ that avoids naming,
and is of the same simplicity as the definition of ‘functor’. To be specific, each of the
two terms of an equation shall be just a mapping T , from (di)algebras to (di)algebras,
that satisfies a particular so-called Transformer property; and such a T is called a
transformer. A transformer is a special kind of functor, as well as a natural transformation.
There are several theorems on transformers that should be true if the notion is to be of
any use. In Section 5c we show that transformers can be composed in various ways to form
transformers again, and are thus as expressive as the usual syntactic terms in conditional
equations. Also, ‘laws’ are closed under conjunction. Moreover, there is some relation
between transformers and Wadler’s [74] Theorems For Free theorem and naturality. In
Section 5d we give, for each law E , conditions under which the class Alg(F,E) of F -
algebras satisfying E is closed under subalgebras, product algebras and homomorphic
images. In Section 5e we give conditions under which Alg(F,E) has an initial object, the
initial F,E -algebra. We also show how to exploit a law E of the initial F,E -algebra in
programming. In Section 5f we show that any colimit is in fact an initial F,E -algebra for
some suitable choice of F and E . And finally, in Section 5g, we show the transformers in
action in the theory of equational specification of datatypes, by proving two little theorems
concerning the isomorphy of two differently specified datatypes.

The simplicity of the proofs of the claims above demonstrates the success of our for-
malisation.
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3 Running example: Trees. In this chapter we use the algebra of binary structures
over a as an example. The default category is Set . The carrier of the algebra is the set
Ba that consists of all finite Binary structures with values from a at the tips. There are
three functions nil , tip, and join .

nil : 1 → Ba the nil structure
tip : a→ Ba the tip former
join : IIBa→ Ba the join operation, joining two structures .

Formally, the algebra is defined by

nil ∇ tip ∇ join, B = sumtype(†) where a† = 1 + a + II
so that

nil ∇ tip ∇ join : 1 + a+ IIB .→B .

The notation x join y is an alternative for join(x, y) . The function that sends each
structure to its size (number of tips) is defined by

nil ; size = zero
tip ; size = one assuming one: a→ nat
join ; size = IIsize ; add

that is,
nil ∇ tip ∇ join ; size = id † size ; zero ∇ one ∇ add

so that
size = ([zero ∇ one ∇ add ]) .

The name tree is an abbreviation of binary structure. In paragraph 12 we shall see that
these binary structures are effectively lists, bags, or sets when operation join and nil
satisfy suitable laws.

5b Transformer and Law

4 Abstracting from syntax. Conventionally an equation for algebra ϕ is just a pair
of terms built from variables, the constituent operations of ϕ , and some fixed standard
operations. An equation is valid if the two terms are equal for all values of the variables.
We are going to model a syntactic term as a morphism that has the values of the variables
as source. For example, the two terms ‘x ’ and ‘x join x ’ (with variable x of type Ba )
are modeled by morphisms id and id ∆ id ; join of type Ba→ Ba . So, an equation for ϕ
is modeled by a pair of terms (Tϕ, T ′ϕ) , T and T ′ being mappings of morphisms which
we call ‘transformer’. This faces us with the following problem: what properties must
we require of an arbitrary mapping T in order that it models a classical syntactic term?
Or, rather, what properties of classical syntactic terms are semantically essential, and how
can we formalise these as properties of a transformer T ? Of course, T has to be well
behaved with respect to typing (like functors). And besides that, the resulting morphism
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Tϕ should be built out of ϕ in a way that is independent of the properties of the particular
ϕ itself and its carrier. For example, for I -algebras we disallow the following mappings
as transformer.

Tϕ = if ϕ has carrier nat then succ else ϕ
Tϕ = if ϕ is bijective then the inverse of ϕ else ϕ .

We disallow these not only for intuitive reasons, but also because with these mappings we
cannot prove the things that we want to hold. A tentative definition that a transformer is
a natural transformation in the underlying default category does meet our intuitive wish
and enables us to prove several desirable theorems, but it makes some terms unexpressible
as a transformer (see Theorem 20). So we need a weaker requirement to be imposed on a
mapping in order that it can be said to model the intuitive notion of term. A way out is
to introduce a syntax of terms, and require T to be expressed in that syntax. That is just
what conventionally is done up to now, and what we want to avoid.

5 A property observed. Our solution is to impose a property, saying that homomor-
phisms are mapped to homomorphisms. This seems to be precisely what is needed to carry
the proofs through. And it is also reasonable from an intuitive point of view. Let me try
to explain it. (You may skip this informal explanation; the proofs of Theorem 14 and 16
are just the formalisation of the argument here.) Suppose ϕ: a→ a and Tϕ: Ha→ Ja .

Following Meertens [48] we view a term as a box with several input and output gates.
Such boxes can be wired together to form composite boxes. You may imagine how the
wiring for sequential composition ( ; ) and parallel composition (× ) would look like. You
can also easily construct boxes for the duplication id ∆ id , and for the swap exr ∆ exl . Now
imagine a box (term) Tϕ: Ha → Ja built with several copies of a box for ϕ: a → a .
Suppose you insert on each of the output lines a box for f : a → b , thus forming a
composite box Tϕ ; Jf : Ha→ Jb . You can then shift each box for f along the wires in
the direction of the input side, through all compositions, until it arrives just after a box for
ϕ . If ϕ ; f = f ; ψ then you can replace the box for ϕ with one for ψ , and put the box
for f just in front of ψ , and continue shifting the box for f along the lines. In this way,
eventually, f is shifted to the input gates. Thus, if ϕ ; f = f ; ψ then you may expect
that Tϕ ; Jf = Hf ; Tψ .

6 Generalisation. Generalising, in the above observation, ϕ: a → a and ψ: b → b
to ϕ: Fa → Ga andψ: Fb → Gb , it is reasonable to expect in the same way that
ϕ ; Gf = Ff ; ψ implies Tϕ ; Jf = Hf ; Tψ . Using dialgebras we can formulate this as:

f : ϕ→F,G ψ ⇒ f : Tϕ→H,J Tψ .(a)

Notice that this formula makes sense even if not all the entities are in one and the same
category. The most general typing is easily found: there are categories A,B, C , the functors
are typed F,G: A → B and H, J : A → C and T : DiAlg(F,G)→ DiAlg(H, J) . It follows
that f is in A , ϕ, ψ are in B , and Tϕ, Tψ are in C with U ′Tϕ = Uϕ .

We shall now derive two alternative but equivalent formulations of property (a).
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Functoriality. Notice that, apparently, T sends DiAlg(F,G) -objects to DiAlg(H, J) -
objects. Actually, if we extend T by defining Tf = f for each DiAlg(F,G) -morphism
f , then property (a) above is one of the axioms for T to be a functor

T : DiAlg(F,G)→ DiAlg(H, J) .(b.0)

The other functor axioms are the equations T id = id and T (f ; g) = Tf ; Tg ; these are
trivially valid by defining Tf = f . Thus extended, T is a functor indeed. That T is the
identity on the morphisms in DiAlg(F,G) can also be formalised as

U ′T = U ,(b.1)

where U, U ′ are the appropriate forgetful functors,

U : DiAlg(F,G)→ A and U ′: DiAlg(H, J)→ A .

Clearly, a T satisfying (a) can be extended to a T satisfying (b.0) and (b.1), and con-
versely, a T satisfying (b.0) and (b.1) also satisfies (a).

Naturality. There is still another reading of the typing of T and property (a), namely

Tϕ: HUϕ→ JUϕ for each F,G -dialgebra ϕ

HUf ; Tψ = Tϕ ; JUf for each f : ϕ→F,G ψ ,

where U : DiAlg(F,G)→ A . So, T is a natural transformation in C from HU to JU ,

T : HU .→ JU .(c)

And each T satisfying (c) also satisfies (a). This was observed by Ross Paterson and Peter
de Bruin. The latter also pointed out, when this text was almost finished, that transformers
are a —slight— generalisation of the semantic operations described by Manes [44]. Manes
investigates a relation with syntactic operations, but doesn’t discuss most topics of this
chapter.

In the following definition we choose one of the three equivalent ways (a), (b.0,b.1) and (c)
to characterise transformers.

Definitions (Transformer, Law)

7 Let F,G: A → B and H, J : A → C be functors. Then a transformer of type
(F,G)→ (H, J) is: a mapping T from F,G -dialgebras to H, J -dialgebras satisfying

f : ϕ→F,G ψ ⇒ f : Tϕ→H,J Tψ Transformer
that is,

ϕ ; Gf = Ff ; ψ ⇒ Tϕ ; Jf = Hf ; Tψ

for all a, b , f : a→A b , ϕ: Fa→B Ga , and ψ: Fb→B Gb .
The pairs (F,G) and (H, J) are called the source type and target type respectively.
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8 A law is: a pair of transformers of the same type, called the type of the law. For a law
E = (T, T ′) we say E holds for ϕ if: Tϕ = T ′ϕ . Alternatively we also say Eϕ holds
or ϕ satisfies E ; a more formal notation would be |= Eϕ or ϕ |= E .

9 A conditional law is: a pair E,E ′ of laws, both having the same source type, that is,
both being applicable to the same dialgebras. Such a law holds for ϕ if: Eϕ implies E ′ϕ .
(We shall hardly discuss conditional laws.)

Often we will take A = B = C in applications of transformers, so that F,G,H, J are
endofunctors on the default category C . It is straightforward to extend the definitions in
such a way that transformers and laws accept several arguments rather than one. Actually,
this is already covered by the above definition by taking B to be a suitable product
category. For example, when B = B′ × B′ , then the transformer gets as argument a pair
from B′ . This will occur in Section 5g.

10 Use of laws. If a law is prescribed for an F -algebra ϕ , then of course the law
must have source type (F, I) , that is, G = I . The definition of law and transformer may
seem unnecessarily general for this application. However, in composing transformers we
need the more general form with G 6= I , even though the entire composite transformer
has G = I ; see Theorem 16. A dual remark holds for co-algebras. As regards to the target
type a similar observation holds; in this case either H = I or J = I depending on the use
of the law. We illustrate both possibilities for the use of a law in the following example;
yet another use, related to the first one, is discussed in Section 5g.

11 Example (Trees continued) Consider the law “xjoiny = yjoinx ,” which we shall
formalise later. Here the type of the two terms, viewed as functions of x and y , is IIBa→
Ba , where Ba is the carrier. So the transformers that model these terms have target type
(II, I) , that is, J = I (and H = II ). The law induces an equivalence relation on Ba
that is a congruence for the algebra, namely the least equivalence relation that contains
all pairs (x join y, y join x) (as indicated by the law) and is closed under the operations
of the algebra, meaning that with (x, x′) and (y, y′) it also contains (tip x, tip x′) and
(x joiny, x′ joiny′) . Imposing the law on the algebra means to identify equivalent elements
and to consider the induced quotient algebra.

Now consider the law “ size x mod 2 = 0 ” (also formalised later). Here the type of the
two terms, viewed as functions of x , is Ba → nat , so in this case the transformers have
target type (I, nat) , that is, H = I (and J = nat ; recall x is the constant mapping, or
functor). Imposing the law on the algebra means to leave out from the carrier the trees
with odd size and to look for an “induced subalgebra” (which might not exist at all). 2

In the sequel we shall illustrate our notion of transformer and law mainly for the case
G = I = J : applicable to algebras and meant to identify elements of the carrier. We are
in fact primarily interested in the rôle of the Transformer property, since we conjecture
this to be the heart of the formalisation of the semantics of terms. Further applications of
transformers and laws await future research.
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12 Example (Trees continued) By making nil neutral for join (that is, making nil
the identity for join ) it behaves properly as ‘empty’: joining nil to a structure yields the
same structure again.

By further imposing associativity of join the trees become effectively lists or sequences,
known as join lists: since xjoin(y joinz) = (xjoiny)joinz , the parentheses may be omitted,
and that structure can be denoted by x join y join z , the usual notation for a list.

Bags result by imposing commutativity of join as well: since x join y = y join x , the
order in which the elements are joined to a structure is insignificant.

Finally, sets are obtained if join is made absorptive (idempotent) in addition: since
x join x = x , the multiplicity of the elements in (the denotation of) a structure is insignif-
icant, as for sets.

Meertens [47] attributes this observation to H.J. Boom, and Backhouse [3] calls these
types the Boom-hierarchy. We shall show how the laws can be expressed as pairs of
transformers. The laws are applicable to every a† -algebra, not only to the initial one (the
trees). Also the law for ‘even size’ of trees is formalised; this one has a feature not present
in the others.

Let ϕ = e ∇ f ∇ ⊕: 1 + a + IIb → b be an arbitrary a† -algebra. Observe that the
constituent operations of ϕ can be expressed as follows.

e = in3,0 ; ϕ : 1 → b
f = in3,1 ; ϕ : a→ b
⊕ = in3,2 ; ϕ : IIb→ b .

So when we say Tϕ = . . . e . . .⊕ . . . , we actually mean the right hand side that is obtained
by substituting the above definitions for e, f, and ⊕ . We discuss the simplest laws first.

Absorptivity. In order to express x ⊕ x = x for all x in b , take

Tϕ = split ; ⊕ and T ′ϕ = id ,

where split = id ∆ id . Here and in the following examples, Theorems 16, 17, and 18 imply
the validity of the Transformer property for both T and T ′ on account of the way they
are composed out of basic transformers. But it may be instructive to verify the property
at least once explicitly. We do it here for T , the verification for T ′ is trivial.

Consider two arbitrary a† -algebras ϕ = d ∇ g ∇⊕ and ψ = e ∇ h ∇⊗ . Suppose f is a
homomorphism from ϕ to ψ ,

f : ψ →a† ψ
that is,

d ; f = e
g ; f = h
⊕ ; f = IIf ; ⊗ .

Then f is a homomorphism from Tϕ to Tψ ,

f : Tϕ→I,I Tψ

≡ definition T , definition →
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split ; ⊕ ; f = f ; split ; ⊗
≡ lhs: assumption on f , rhs: naturality split : I .→ II

split ; IIf ; ⊗ = split ; IIf ; ⊗
≡ Leibniz

true.

Commutativity. To express x⊕ y = y ⊕ x for all x, y in b , take

Tϕ = ⊕ and T ′ϕ = swap ; ⊕ ,

where swap = exr ∆ exl .

Neutrality. To express e ⊕ x = x for all x in b , take

Tϕ = (! ; e) ∆ id ; ⊕ and T ′ϕ = id .

Here !: b→ 1 is the unique morphism into the unit type 1 .

Associativity. To express (x⊕ y)⊕ z = x⊕ (y ⊕ z) for all x, y, z in b , take

Tϕ = ⊕× id ; ⊕ and T ′ϕ = assoc ; id ×⊕ ; ⊕
where

assoc = (exl ; exl) ∆ ((exl ; exr) ∆ exr) : (X × Y )× Z .→X × (Y × Z)

Here functors X, Y, Z stand for Ex 3,0,Ex 3,1,Ex 3,2 .

Even size. A problem in expressing (size x) mod 2 = 0 is that size is not an operation
of the algebra. Given that ϕ is the initial algebra, size is just ([ϕ → zero ∇ one ∇ add ]) ,
as we have shown earlier. However, T should be applicable to every algebra ϕ , not just
an initial one. In fact, it is a problem what “ size ” means at all if ϕ is not initial. One
way out is this. First extend the algebra with an additional operation ψ specified by the
‘defining equations’ for size : “ϕ ; ψ = Fψ ; zero ∇ one ∇ add ”. This is discussed in detail
in Section 5g and gives an F,G -bialgebra (ϕ, ψ) for some G . Then form, for arbitrary
F,G -bialgebra (ϕ, ψ) , the law E suggested by

E(ϕ, ψ) = “ ϕ ; ψ ; mod2 = zero ” .

Transformers are applicable to bialgebras indeed, by a suitable instantiation of A,B and
the functors in the definition of transformer. 2

After all these examples one might wonder whether there are morphism mappings that
have type (F,G)→ (H, J) for some F,G,H, J and are not transformers.

13 Fact. The morphism mappings given at the beginning of the section are not trans-
formers; the Transformer property is not valid for them.
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5c Expressiveness of transformers and laws

We shall see in this section that the Transformer property for a mapping of type
(F,G)→ (H, J) follows from the Theorems For Free theorem (provided it is applicable to
the mapping). Further, the usual syntactic ways to compose terms are also applicable to
transformers: they are closed under composition and substitution, and the identity map-
ping and each functor and constant mapping is a transformer. Thus transformers are at
least as expressive as syntactic terms. Also, natural transformations of a higher type are
transformers, but not conversely. And, finally, laws are closed under conjunction.

* * *

14 Theorem. Let T be a morphism mapping of type ∀α :: (Fα → Gα) → (Hα →
Jα) , and suppose that the Theorems For Free theorem of Wadler [74] is applicable to T .
Then T is a transformer of type (F,G)→ (H, J) .

Proof. We use the notation of Wadler [74] except for our choice of identifiers and the
order of composition:

Each function f denotes a relation, namely (x, y)∈f ≡ f(x)=y . Composition ; is
extended to relations: (x, z) ∈ R ; S iff there exists an y for which (x, y) ∈ R and
(y, z) ∈ S . For relations R and S and relation mapping F , expressions R → S
and ∀r :: Fr denote a relation too:

(f, g) ∈ (R→ S) ≡ R ; g ⊆ f ; S
≡ ∀x, y :: (x, y) ∈ R ⇒ (f x, g y) ∈ S

(T, T ′) ∈ (∀r :: Fr) ≡ ∀a, b, R: a⇔b :: (Ta, T
′
b) ∈ FR .

Here, a⇔b is the type of relations containing pairs (x, y) with x ∈ a and y ∈ b .
All morphisms (functions) are required to be total, so that f ⊆ g equivales f = g .

The task is to prove that Transformer is valid for T . For this we argue

T : ∀α :: (Fα→ Gα)→ (Hα→ Jα)

⇒ Theorems for Free — applicability assumed

(T, T ) ∈ ∀r :: (Fr → Gr)→ (Hr → Jr)

≡ definition ∀
∀reln R: a⇔ b. (Ta, Tb) ∈ (FR→ GR)→ (HR→ JR)

≡ definition → (second alternative)

∀reln R: a⇔ b. ∀ϕ, ψ. (ϕ, ψ) ∈ (FR→ GR) ⇒ (Taϕ, Tbψ) ∈ (HR→ JR)

≡ definition → (first alternative) at both sides

∀reln R: a⇔ b. ∀ϕ, ψ. FR ; ψ ⊆ ϕ ; GR ⇒ HR ; Tbψ ⊆ Taϕ ; JR

⇒ taking R: a⇔ b to be a function f : a→ b

∀fctn f : a→ b. ∀ϕ, ψ. Ff ; ψ = ϕ ; Gf ⇒ Hf ; Tbψ = Taϕ ; Jf

which is exactly the required Transformer property. 2
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One condition on T for the applicability of the Theorems For Free theorem is that T is
lambda-definable (there may be more conditions on the category — this is not clear to me).
In the definition of transformer each morphism mapping is allowed, even those that are not
lambda-definable. Theorems For Free suggests that Transformer is a crucial property
(and provides an alternative rationale for requiring this property to hold for transformers).
Moreover, working in a ‘functional’ categorical setting, it seems that Theorems For Free
suggests no stronger property for transformers.

15 Composite transformers. Here follow some theorems showing how transformers
may be composed to form transformers again.

16 Theorem. The following equations define transformers of the type indicated, pro-
vided that T, T ′ are transformers of type (F,G) → (H, J) and (F ′, G′) → (H ′, J ′) re-
spectively, and that the well-formedness conditions at the right hold.

Iϕ = ϕ I : (F,G)→ (F,G)

fϕ = f f : (F,G)→ (srcf, tgtf)

εϕ = ε ε : (F,G)→ (H, J) ε: H .→ J

(T ;T ′)ϕ = Tϕ ; T ′ϕ (T ;T ′) : (F,G)→ (H, J ′)





(F,G) = (F ′, G′)

J = H ′

(T ◦ T ′)ϕ = T (T ′ϕ) (T ◦ T ′) : (F ′, G′)→ (H, J) (H ′, J ′) = (F,G)

([ ])F ϕ = ([ϕ])F ([ ]) : (F, I)→ (UµF , I) µF exists.

Proof. The correct typing is immediate for all these transformers. As regards the
Transformer property for ([ ]) we argue as follows. Let a = UµF . Then

af ; ([ ])ϕ = ([ ])ψ ; If

≡ definition ([ ]) , a , and I

([ϕ]) = ([ψ]) ; f

⇐ cata-Fusion

ψ ; f = Ff ; ϕ.

This fact is a special instance of cata-Transformer 57: take x†y = Fy , so that I †I = F
and L = UµF .

As regards the Transformer property of the composite T ◦ T ′ we argue:

T (T ′ϕ) ; Jf = Hf ; T (T ′ψ)

⇐ Transformer T , noting that (F,G) = (H ′, J ′)

T ′ϕ ; J ′f = H ′f ; T ′ψ

⇐ Transformer T ′

ϕ ; G′f = F ′f ; ψ.
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Rephrased with the →F,G notation, this calculation is but a special instance of the proof
that the composition of functors is a functor again.

The other parts are proved similarly to T ◦T ′ . Actually, that f is a transformer follows
also from the fact that ε is a transformer, since f : a→ b implies f : a .→ b . 2

17 Theorem. Let T be a transformer of type (F,G)→ (H, J) , and K a functor into
the source category of F,G,H, J . Then T is also a transformer of type (FK,GK) →
(HK, JK) .

Proof. The typing is clearly correct. As regards the Transformer property we argue:

f : Tϕ→HK,JK Tψ

≡ unfold, fold

Kf : Tϕ→H,J Tψ

⇐ Transformer for T of type (F,G)→ (H, J)

Kf : ϕ→F,G ψ

≡ unfold, fold

f : ϕ→FK,GK ψ

as required. 2

The next theorem shows that each functor is a transformer. Remember that Exl and Exr
denote the extraction (projection) functors from a product category to the component
categories respectively.

18 Theorem. Let K: B → C be a functor. Put X, Y = Exl ,Exr , both being functors
of type B × B → B . Then K is a transformer of type (X, Y )→ (KX,KY ) .

Proof. The typing requirement for K is met: taking A = B × B ,

∀a in A, ϕ: Xa→B Y a :: Kϕ: KXa→C KY a
≡ definition A and X, Y

∀b, c in B, ϕ: b→B c :: Kϕ: Kb→C Kc
≡ functoriality of K

true.

To check the Transformer property, we argue:

f : Kϕ→KX,KY Kψ

⇐ general theorem (even for arbitrary X, Y )

f : ϕ→X,Y ψ.
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It may be instructive to spell out this implication. Observe that a morphism f in B × B
has the form f = (g, h) for some morphisms g, h in B . The Transformer property
thus reads

(g, h): ϕ→Exl ,Exr ψ ⇒ (g, h): Kϕ→K Exl , K Exr Kψ
that is,

ϕ ; h = g ; ψ ⇒ Kϕ ; Kh = Kg ; Kψ .

Indeed, this is valid for each functor K . 2

From all these theorems we conclude that for all conventional laws there is no need to check
Transformer explicitly: the transformers of such laws are built entirely by the composi-
tions of the theorems. In particular this holds for morphisms and natural transformations
like projections, injections, split, junc, product and sum and so on.

19 Naturality of transformers. Before we realised that transformers are natural
transformations as explained in paragraph 6 we were looking for naturality properties in
the way reported here. As a motivation, notice that a transformer T maps morphisms of
type Fa → Ga into morphisms of type Ha → Ja . In a sense, transformers are natural
transformations from ‘functor’ F → G to ‘functor’ H → J . Let us first make precise
what we mean.

The infix written bifunctor

→ : Cop × C → Set ( op is explained below)

is defined as follows (it is the Hom-functor). For objects a, b and morphisms f : a → b
and g: c→ d ,

(a→ b) = {x| x: a→C b}
(f → g) = λ(x :: f ; x ; g) : (b→ c)→ (a→ d) .

(The interchange of a and b in the type of (f → g) means that → is contravariant
in its first argument, indicated by op in the typing.) Notice that x: a →C b equivales
x ∈ (a→ b) (thus justifying our choice of notation). For readability put X, Y = Exl ,Exr .
Recall also the convention that (F †G)x = Fx †Gx , which we shall use with → for † .

Consider now a natural transformation T : (FX → GY ) .→ (HX → JY ) . Working out
in detail what naturality means we find

T : (FX → GY ) .→ (HX → JY )

≡ ntrf: for all (f, g): (b, c)→Cop×C (a, d) (so f : a→C b )

(Ff → Gg) ; Tad = Tbc ; (Hf → Jg)

≡ extensionality in Set : for all ϕ ∈ (Fb→ Gc)

((Ff → Gg) ; Tad)ϕ = (Tbc ; (Hf → Jg))ϕ

≡ application, composition, hom-functor
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Tad(Ff ; ϕ ; Gg) = Hf ; Tbcϕ ; Jg.

That is, natural transformation T satisfies a two-sided fusion law. (An adjunction be-
tween F and J is nothing but such a natural transformation that has an inverse, so that
necessarily G = H = I .)

20 Theorem. Suppose T : (FX → GY ) .→ (HX → JY ) . Define mapping T ′ by
T ′ϕ = TUϕ,Uϕϕ . Then T ′ is a transformer of type (F,G) → (H, J) . The converse is not
true, that is, there exist transformers that cannot be written this way.

Proof. As regards the typing requirement, the statement ϕ: Fa → Ga implies clearly
T ′ϕ: Ha → Ja . It remains to verify the Transformer property. Let ϕ, ψ be F,G -
dialgebras with carriers a, b respectively, and let f : a→ b . Then

T ′ϕ ; Jf = Hf ; T ′ψ

≡ definition T ′ , identity

Hida ; Ta,aϕ ; Jf = Hf ; Tb,bψ ; J id b

≡ in lhs: naturality T with a, b, c, d, f, g := a, a, a, b, id a, f ,

in rhs: naturality T with a, b, c, d, f, g := a, b, b, b, f, id b

Ta,b(F ida ; ϕ ; Gf) = Ta,b(Ff ; ψ ; Gid b)

⇐ Leibniz, identity

ϕ ; Gf = Ff ; ψ.

To show that the converse is not true, consider arbitrary η: H .→J . Then by Theorem 16
η is a transformer of type (F,G) → (H, J) . It is not a natural transformation of type
(FX → GY ) .→ (HX → JY ) since the typing is not correct; this is also apparent from
the two-sided fusion law that now simplifies to

η = Hf ; η ; Jg

which should hold for each a, b, c, d and f : a→ b and g: c→ d — clearly impossible in
general. For a counterexample, take η = id : I .→ I . 2

21 Conjunction. If E0 and E1 are two laws with the same source type, then by ‘a
conjunction’ of E0 and E1 we mean a law E such that for all ϕ : Eϕ ≡ E0ϕ∧E1ϕ . We
shall show that there are two ways of representing the conjunction of laws. The two ways
yield laws of different target type.

For mappings Ti: (F,G)→ (Hi, J) ( i = 0, 1 ) we define T0 ∇ T1 by

(T0 ∇ T1)ϕ = T0ϕ ∇ T1ϕ : H0a+H1a→ Ja

for any a and ϕ: Fa → Ga . It follows by homo-Sum that T0 ∇ T1 is a mapping of type
(F,G)→ (H0+H1, J) . The composite S0 ∆ S1 is defined similarly, and we have

S0 ∆ S1 : (F,G)→ (H, J0×J1)
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for Si: (F,G) → (H, Ji) . Of course we need to assume that the category has sums or
products, respectively.

22 Theorem. Let Ti, T
′
i : (F,G)→ (Hi, J) be transformers for i = 0, 1 . Then T0 ∇ T1

is a transformer, and

(T0 ∇ T1)ϕ = (T ′0 ∇ T
′
1)ϕ ≡ T0ϕ = T ′0ϕ ∧ T1ϕ = T ′1ϕ .

Similarly, for Si, S
′
i: (F,G)→ (H, Ji) , mapping S0 ∆ S1 is a transformer, and

(S0 ∆ S1)ϕ = (S ′0 ∆ S ′1)ϕ ≡ S0ϕ = S ′0ϕ ∧ S1ϕ = S ′1ϕ .

Proof. The equivalences follow from the properties for product and sum. For the Trans-
former property of T0 ∇ T1 , let ϕ ; Gf = Ff ; ψ . Then

(T0 ∇ T1)ϕ ; Jf
=

(T0ϕ ; Jf) ∇ (T1ϕ ; Jf)

= Transformer T0, T1

(H0f ; T0ψ) ∇ (H1f ; T1ψ)
=

(H0 +H1)f ; (T0 ∇ T1)ψ.

The proof for S0 ∆ S1 is similar. Law homo-Sum 3.18 and homo-Prod 3.19 express
properties very similar to these transformer properties. 2

So, if two laws E0 = (T0, T
′
0) and E1 = (T1, T

′
1) have typing Ti, T

′
i : (F, I)→ (Hi, I) , and

are used to “identify elements in the carriers” of F -algebras as explained in paragraphs 10
and 11, then E = (T0 ∇ T1, T

′
0 ∇ T

′
1) is a conjunction of such a type that it may be used for

the same purpose as E0 and E1 . The ∆ -form of the conjunction of laws is to be used if
the laws are used to “leave out elements from the carriers” as explained in paragraph 11.

Of course, there are also arbitrary infinite conjunctions of laws, provided the category
has arbitrary infinite sums or products.

5d One half of a Birkhoff characterisation

23 Birkhoff characterisation. Let F and H be endofunctors and E = (T, T ′) be
a law of type (F, I) → (H, I) , fixed throughout this section. We define Alg(F,E) as
the full subcategory of Alg(F ) containing all and only those F -algebras for which law E
is valid. A “Birkhoff characterisation” is a characterisation of the classes (subcategories)
that can be specified by means of a single law. For example, a characterisation might be
an equivalence like: for any class A of F -algebras,

A = Alg(F,E) for some law E
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if and only if

A is closed under subalgebras, homomorphisms, and products.

We shall give one half of such an equivalence (the easy half): some closure properties of
Alg(F,E) . (I’ve been unable to prove the converse.) Some care is needed in defining
subalgebras and homomorphic images since we wish to work in an arbitrary category, and
not just in Set where several properties hold that are not valid in, say, CPO . The notions
of subalgebra and homomorphic image that we define are dual to each other.

24 Subalgebra. Given F -algebras ϕ and ψ , we say ϕ is a subalgebra of ψ if: there
exists an f : ϕ→F ψ which is monic in C . A subcategory A of Alg(F ) is closed under
subalgebras if: each subalgebra of an algebra in A is in A too. More in spirit with the
position that in any category the morphisms are important and the objects play only an
auxiliary rôle, we define also another, related, property. A is closed under incoming
monos if: f is a morphism in A whenever f : ϕ→F ψ is monic in C and ψ is in A . For
a full subcategory of Alg(F ) , closure under subalgebras equivales closure under incoming
monos.

25 Theorem. Alg(F,E) is closed under subalgebras (i.e., under incoming monos).

Proof. Suppose f : ϕ→F ψ is monic, and ψ is in Alg(F,E) . We show that Eϕ holds.

Tϕ = T ′ϕ

⇐ f monic

Tϕ ; f = T ′ϕ ; f

≡ Transformer (condition ‘ϕ ; f = Ff ; ψ ’ is satisfied) at both sides

Hf ; Tψ = Hf ; T ′ψ

⇐ Leibniz, and ψ in Alg(F,E)

true.

So ϕ is in Alg(F,E) and, since Alg(F,E) is a full subcategory of Alg(F ) , f is a
morphism in Alg(F,E) as well. 2

26 Homomorphisms. Consider f : ϕ→F ψ . Working in Set the homomorphic image
of ϕ under f is the algebra ψ restricted to the range of function f . A generalisation
to arbitrary categories is problematic, since categorically there are no points available.
Working with varieties, as Lehmann [38, 39] does, the corresponding closure property says
that with ϕ also ψ is in the class. That is certainly not true for Alg(F,E) , as we shall
argue after the theorem. Our way out is to consider epic homomorphisms. We define:
A subcategory A of Alg(F ) is closed under homomorphic images if: ψ is in A
whenever there exists an f : ϕ →F ψ which is epic in C and ϕ is in A . And, A is
closed under outgoing epis if: f is a morphism in A whenever f : ϕ→F ψ is epic and
ϕ is in C . For a full subcategory of Alg(F ) , closure under homomorphic images equivales
closure under outgoing epis.
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27 Theorem. Suppose H (from the type of E ) preserves epis. Then Alg(F,E) is
closed under homomorphic images (that is, under outgoing epis).

Proof. Let f : ϕ→F ψ be epic, with ϕ in Alg(F,E) .

Tψ = T ′ψ

⇐ Hf is epic

Hf ; Tψ = Hf ; T ′ψ

≡ Transformer (condition ‘ f : ϕ→F ψ ’ is satisfied) at both sides

Tϕ ; f = T ′ϕ ; f

≡ assumption: ϕ in Alg(F,E)

true.

So ψ is in Alg(F,E) , and since Alg(F,E) is a full subcategory of Alg(F ) , f is a
morphism in Alg(F,E) . 2

For later use we mention the following result; its proof is part of the above one.

28 Lemma. Let ϕ in Alg(F,E) , and f : ϕ→F ψ . Then Eψ holds “on the range of
f ”, that is, Hf ; Tψ = Hf ; T ′ψ .

The requirement that a functor (like H in the theorem) preserves epis, is a mild one. In
Set all polynomial functors preserve epis. Lehmann [39] argues that preservation of epis
is an important property.

29 Homomorphisms do not preserve laws. It is now clear why homomorphisms
do not preserve the validity of laws: outside the range of the homomorphism nothing
can be inferred for the target algebra. (This may be a good reason to work with the
variety VF (EµF ) instead of Alg(F,E) , see Definition 34 and Theorem 35.) For example,
imagine in Set the algebra zero ∇ add : 1 + IInat → nat of finite naturals, where zero is a
neutral element for add . Form another algebra by adjoining a fictitious element ω to nat ,
and extend operation add as follows: for any natural x , add ′(x, ω) = add ′(ω, x) = x and
add ′(ω, ω) = ω . The injection of the original algebra into this new one is a homomorphism,
but in the new algebra zero is no longer neutral for add ′ .

30 Product. For F -algebras ϕ, ψ (with carriers a and b say), and F -homomorphisms
f, g with common source in Alg(F ) we define

ϕ×F ψ = (F exl ; ϕ) ∆ (F exr ; ψ) : F (a× b)→ (a× b)
f ∆F g = f ∆ g
exlF , exrF = exl , exr .
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It is then readily verified that ×F , ∆F , exlF , exrF form a categorical product in Alg(F ) ,
and we omit the subscript F in these operations since no confusion can result. In partic-
ular, exl : ϕ× ψ →F ϕ , that is,

ϕ× ψ ; exl = F exl ; ϕ ,(∗)

and similarly for exr . The generalisation to arbitrary products is straightforward; the
proviso being that the default category has arbitrary products.

31 Theorem. Alg(F,E) is closed under products.

Proof. We consider only binary products.

T (ϕ× ψ) = T ′(ϕ× ψ)

⇐ the projections are jointly monic in C
T (ϕ× ψ) ; exl = T ′(ϕ× ψ) ; exl and

T (ϕ× ψ) ; exr = T ′(ϕ× ψ) ; exr

≡ Transformer at both sides (condition is satisfied: see (∗) above)

Hexl ; Tϕ = Hexl ; T ′ϕ and

Hexr ; Tψ = Hexr ; T ′ψ

⇐ Leibniz, ϕ, ψ in Alg(F,E)

true.

2

5e Initial algebras with laws

Let F be an endofunctor for which the initial algebra α = µF exists. Let E be a
law of type (F, I) → (H, I) for some endofunctor H . As before, Alg(F,E) is the full
subcategory of Alg(F ) of algebras for which E holds. We are interested in an algebra
that is initial in Alg(F,E) ; we shall denote it by µ(F,E) .

32 Example (Trees continued) Take E to be the law such that E(e∇f∇⊕) expresses
both the neutrality of e for ⊕ , and the associativity of ⊕ . Then µ(F,E) , if it exists,
is the algebra of join lists. Put nil ′ ∇ tip ′ ∇ join ′ = µ(F,E) and let e ∇ f ∇ ⊕ be another
(F,E) -algebra. Now, by definition of initiality, the recursive equations

nil ′ ; h = e
tip ′ ; h = f
join ′ ; h = IIh ; ⊕

have precisely one solution for h , denoted ([nil ′ ∇ tip ′ ∇ join ′ → e ∇ f ∇⊕])F,E . Actually, the
equations imply that e is neutral for ⊕ , and ⊕ is associative, at least on the range of h :
see Lemma 28. 2
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33 Induced congruence. We explain here informally in terms of Set the notion of
induced congruence; in Section 2f we have given a discussion in category speak. Let ϕ be
an F -algebra with carrier a , and f, g be morphisms with target a and common source;
think in particular of ϕ, (f, g) = α, (Tα, T ′α) . The pair (f, g) induces an equivalence
relation p on a , namely the least equivalence relation on a that contains all (fx, gx) ;
categorically, this is a morphism p with f ; p = g ; p that has some initiality property.
The target of p may be denoted a/(f, g) , thus p: a→ a/(f, g) .

We say that an equivalence relation p for (f, g) is a congruence for ϕ if p -related
elements are mapped by ϕ to p -related results; this is almost the same as saying that
p is a homomorphism from ϕ . Given ϕ and (f, g) , the induced congruence is the least
equivalence relation that contains all pairs (fx, gx) and is a congruence for ϕ ; the target
of p may be denoted ϕ/(f, g) , thus p: ϕ→F ϕ/(f, g) .

Thus, when α and E are given, a construction of µ(F,E) = α/(Tα, T ′α) requires a
construction of the congruence p for algebra α induced by (Tα, T ′α) . Our construction
of p in Section 2f simulates the well-known one for Set , and assumes properties of the
default category that are not obviously satisfied by category CPO . Since we are also
interested in applications to CPO , see Chapter 6, and want to be truly general, we shall
use a result from Lehmann [38, 39].

34 Definition. For a pair (f, g) of morphisms with common source and with the carrier
of α as their common target, the (f, g) -variety VF (f, g) is the full subcategory of Alg(F )
of algebras ϕ for which f ; ([ϕ]) = g ; ([ϕ]) .

Notice that ϕ 7→ f ; ([ϕ]) is a transformer, so that VF (f, g) equals Alg(F,E ′) where E ′

is the law determined by the transformers ϕ 7→ f ; ([ϕ]) and ϕ 7→ g ; ([ϕ]) .

35 Theorem (Lehmann [39]) For C = Set and for each C that satisfies the con-
ditions of Lehmann’s theorem, such as CPO and several other order-enriched categories,
and assuming that F preserves epis, any variety VF (f, g) has an initial object, denoted
α/(f, g) . Moreover ([α/(f, g)]) is epic in C .

The following result enables us to exploit Lehmann’s theorem.

36 Theorem. Suppose that H (of the type of E ) preserves epis. Then Alg(F,E) is
a full subcategory of VF (Eα) , and contains each ϕ of VF (Eα) for which ([ϕ]) is epic in
C .

Proof. Since both Alg(F,E) and VF (Eα) are full subcategories of Alg(F ) , we have to
show, for the first claim, that each ϕ in Alg(F,E) is also in VF (Eα) . This implication
is shown as follows. Let ϕ be arbitrary in Alg(F ) . Then

ϕ is in VF (Eα)

≡ definition 34 of VF (Eα) , and ϕ is in Alg(F )

Tα ; ([ϕ]) = T ′α ; ([ϕ])

≡ Transformer at both sides (condition is satisfied: ([ϕ]): α→F ϕ )
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H([ϕ]) ; Tϕ = H([ϕ]) ; T ′ϕ

⇐ Leibniz(∗)
Tϕ = T ′ϕ

≡ definition of Alg(F,E) , and ϕ is in Alg(F )

ϕ is in Alg(F,E).

For the second claim, let ϕ be in VF (Eα) such that ([ϕ]) is epic in C . Then the ⇐ in
step (∗) above can be strengthened to ≡ since ([ϕ]) is epic and H is assumed to preserve
epis. Hence ϕ is in Alg(F,E) as well. 2

37 Corollary. Suppose both F and H preserve epis, and C satisfies the conditions of
Lehmann’s theorem [39], see 35. Then Alg(F,E) has an initial object, denoted µ(F,E) .

Proof. By Theorem 35 VF (Eα) has an initial object α/Eα , and ([α/Eα]) is epic in
C . (Here the conditions on F and C are used.) Then by Theorem 36 α/Eα is also in
Alg(F,E) , and moreover it is also initial in Alg(F,E) . (Here it is used that H preserves
epis.) 2

* * *

Although the following is independent of the precise nature of laws and transformers, we
cannot resist the temptation to include it. The theorem is useful for the development of
efficient programs, as we shall explain afterwards. We put α = µF and β = µ(F,E) , and
write ([α → ϕ])F as ([ϕ]) , and ([β → ϕ])F,E as ([ϕ])E .

38 Theorem (Meertens) Suppose (α and also) β exists, and suppose ([β]) has a
pre-inverse u . Then

([ϕ])E = u ; ([ϕ])
([ϕ]) = ([β]) ; u ; ([ϕ])

for each ϕ in Alg(F,E) .

Proof. For the first claim we argue

([ϕ])E = u ; ([ϕ])

≡ u is pre-inverse of ([β])

u ; ([β]) ; ([ϕ])E = u ; ([ϕ])

⇐ Leibniz

([β]) ; ([ϕ])E = ([ϕ])

⇐ cata-Fusion

([ϕ])E: β →F ϕ

≡ cata-Self

true.
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The second claim is an immediate corollary:

([β]) ; u ; ([ϕ])

= just shown

([β]) ; ([ϕ])E
= cata-Fusion (condition is satisfied: ([ϕ])E: β →F ϕ )

([ϕ]).

The existence of β (hence the well definedness of ([ ])E ) is guaranteed by the previous
theorems if F and H preserve epis. 2

39 Application. In Set , the carrier of β consists of the ' -equivalence classes of the
carrier of α , where ' is the least equivalence that contains the pairs ((Tα)z, (T ′α)z) for
all z . A pre-inverse u of ([α → β]) chooses for each equivalence class a representative in the
class. So the theorem says that ([β → ϕ])E at x may be computed by computing ([α → ϕ])
at a representative of x instead. In this way the operational efficiency of a program may
be improved.

40 Example (Trees continued) Let E(e ∇ id ∇ ⊕) express that ⊕ is an associative
operation with neutral element e , and suppose that the law holds for e∇ id ∇⊕ . The value
of ([e ∇ id ∇⊕])E at arguments x join′ (y join′ z) and (x join′ y) join′ z is

([e ∇ id ∇⊕])E(x join′ (y join′ z)) = x⊕ (y ⊕ z)
([e ∇ id ∇⊕])E((x join′ y) join′ z) = (x⊕ y)⊕ z .

Due to associativity both results are the same, yet the computations as suggested by the
right hand sides may differ operationally. For example, the first alternative is more efficient
if x ⊕ y takes time linear in size x , and size (x ⊕ y) = size x + size y . (This is valid
in most functional programming languages for ⊕ equal to the concatenation of lists.)
Thus associativity may be exploited. More generally, let u be the function that sends
x join′ y join′ . . . join′ z (with arbitrary parenthesisation) to x join (y join (. . . join z)) (with
parenthesation to the right). The theorem asserts that ([e ∇ id ∇⊕])E = u ; ([e ∇ id ∇⊕]) ,
and by the argument above we know that the catamorphism in the right hand side is
more efficient than that in the left hand side. (It is quite easy to express u explicitly.
In an actual program transformation u might disappear completely, namely when this
transformation is but one step in a large series of steps.) 2

41 Another application. In a similar way the second claim of the theorem asserts
that if ϕ satisfies E , then “within the argument” of ([ϕ]) α may be manipulated as if it
satisfies E , that is, Tα ; ([ϕ]) = T ′α ; ([ϕ]) . This is shown as follows.

Tα ; ([ϕ]) = T ′α ; ([ϕ])

≡ second claim of the theorem: ([ϕ]) = ([β]) ; u ; ([ϕ])
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Tα ; ([β]) ; u ; ([ϕ]) = T ′α ; ([β]) ; u ; ([ϕ])

⇐ Leibniz

Tα ; ([β]) = T ′α ; ([β])

≡ Transformer (condition is satisfied: ([β]): α→F β ) at both sides

H([β]) ; Tβ = H([β]) ; T ′β

≡ Leibniz, Eβ holds

true.

5f Each colimit is an initial lawful algebra

Lambert Meertens has made the following observation. For an arbitrary colimit we can
construct an endofunctor F and a law E such that (the “∇ ” of) the colimit is an initial
(F,E) -algebra, provided the category has arbitrary sums. This is further evidence for the
expressiveness of our notion of law. We shall first perform the construction for coequalisers,
and then for colimits in general.

42 Coequalisers. Let f, g be a parallel pair with target a , and let p be a coequaliser
of f, g . This means, by definition, that f ; p = g ; p and for each q with f ; q = g ; q
there exists a morphism, which we denote p\q , such that

p ; x = q ≡ x = p\q coequaliser-Charn

Now take F = a , the constant functor mapping any morphism onto id a . Take

E = (T, T ′) with Tq = f ; q and T ′q = g ; q

for each q: Fb → b = a → b . Then, in the notation of Theorem 16, T = f ; I and
similarly T ′ = g; I , and so E is a law (by that same theorem). Further, Ep holds, and
p: F (tgt p)→ tgt p . So p is an (F,E) -algebra. To show the initiality of p we shall prove
cata-Charn, deriving along the way a definition for the required ([p → q]) .

x: p→F q

≡ definition →F and F = a

p ; x = q

≡ coequaliser-Charn, noting that f ; q = g ; q

x = p\q
≡ defining ([p → q]) = p\q
x = ([p → q]).
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43 Colimits. We generalise the above construction to arbitrary colimits. The p and q
above become cocones γ, δ or algebras γ ′, δ′ below, the f and g become (the arrows in)
the diagram D , and law E is going to express “the commutativity of all triangles”. First
we give a formalisation of colimit that suits the present purpose well.

Let D be a diagram in C . A cocone for D is a family δ = (a in D :: δa) such that

∀f : a→ b in D :: δa = f ; δb .(a)

A cocone γ is a colimit for D if for any cocone δ for D there exists a morphism, which
we denote γ\δ , such that

∀(a in D :: γa ; x = δa) ≡ x = γ\δ(b) colimit-Charn

44 The construction. Take F = ΣD , where ΣD = (the carrier of) the sum of all
objects in D . Similarly to the Trees example each F -algebra δ ′: ΣD → d can be written
as δ′ = ∇(a in D :: ina ; δ′) . We design E such that Eδ equivales (a) above:

E = the conjunction of the laws (Ta, T
′
f,b) for all f : a→ b in D

where
Taδ

′ = ina ; δ′

T ′f,bδ
′ = f ; inb ; δ′ .

Indeed, δ′ = ∇(a :: δa) is an (F,E) -algebra iff δ = (a :: δa) is a cocone for D . Moreover,
by Theorem 16 Ta and T ′f,b are transformers, so that (Ta, T

′
f,b) is a law, and by Theorem 22

the conjunction E can be expressed as a law.
Let γ = (a :: γa) be a colimit for D . We claim that γ ′ = ∇(a :: γa) is initial in

Alg(F,E) . To show this let δ′ = ∇(a :: δa) be an arbitrary (F,E) -algebra. Then, as
argued above, δ = (a :: δa) is a cocone for D , so γ\δ satisfying (b) exists. It is now
readily shown that γ\δ taken as ([γ ′ → δ′]) meets the requirement of cata-Charn:

x: γ′ →F δ
′

≡ definition →F

γ′ ; x = Fx ; δ′

≡ definition F as a constant functor

γ′ ; x = δ′

≡ definition γ′ and δ′ and sum

∀a in D :: γa ; x = δa

≡ colimit-Charn: (b) above

x = γ\δ
≡ definition ‘ ([γ′ → δ′]) ’

x = ([γ′ → δ′]).

So γ′ is initial indeed.



5g. Equational specification of datatypes 127

5g Equational specification of datatypes

45 Datatype of stacks. In paragraph 3.77 we have shown that a ‘datatype’ like the
usual stack is a bialgebra (ϕ, ψ) (which in turn is a particular dialgebra). To be specific,
for stack we have

ϕ = empty ∇ push : 1 + a× b→ b = Fb→ b
ψ = isempty ∆ top ∆ pop : b→ bool × a× b = b→ Gb

where a is the type of the stacked values and b is the type of the stacks themselves, and
apparently F = 1 + a× I and G = bool × a× I . Often for such ‘datatypes’ some law E
is imposed that “defines” the ψ -part in terms of the ϕ -part. For stack the laws are

empty ; isempty = true
push ; isempty = false
push ; top = exl
push ; pop = exr .

Written as two equations:

empty ; ψ = id 1 ; true ∆ ... ∆ ...
push ; ψ = ida × ψ ; (! ; false) ∆ exl ∆ (exr ; ex 3,1 ∆ ex 3,2 ; push)

where on the dots there have to be expressions of type 1 → a and 1 → b respectively,
defining the top and pop of an empty stack. (It is outside the scope of our current interest
to discuss this aspect in detail.) We can even combine the two equations into one, thus
obtaining a law

E(ϕ, ψ) = “ ϕ ; ψ = Fψ ; Tϕ ”

for some transformer T of type (F, I) → (FG,G) . Theorem 46 below asserts that for a
law of this form, with arbitrary transformer T , the ‘datatype’ (initial bialgebra) (ϕ, ψ) is
isomorphic to the initial F -algebra (the ϕ -part) to which ([Tϕ]) (the ψ -part) is added
as a derived operation. Since for the F above the initial F -algebra is known as the cons
lists over a , we find that the datatype stack is semantically just the algebra of cons lists
with some additional derived operations, “destructors” in this case.

Notation. Category BiAlg(F,G;E) is the full subcategory of BiAlg(F,G) of those bialge-
bras that satisfy law E .

46 Theorem. Let T be a transformer of type (F, I) → (FG,G) , and suppose that
α = µF exists. Let E be the law suggested by

E(ϕ, ψ) = “ ϕ ; ψ = Fψ ; Tϕ ” for F,G -bialgebra (ϕ, ψ) .

Then (α, ([Tα])) is initial in BiAlg(F,G;E) .
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Proof. (Observe that law E is well-formed; the type of both sides of the equation is
Fa → Ga where a is the carrier of the argument.) Let (ϕ, ψ) be a F,G -bialgebra for
which E holds. We shall show that

x: (α, ([Tα])) →BiAlg(F,G) (ϕ, ψ) ≡ x = ([ϕ])

thus establishing the existence and uniqueness of an F,G -bi-homomorphism, namely ([ϕ]) ,
from (α, ([Tα])) to (ϕ, ψ) .

x: (α, ([Tα])) →BiAlg(F,G) (ϕ, ψ)

≡ definition BiAlg(F,G)

x: α→F ϕ ∧ x: ([Tα])→G,I ψ

≡ cata-Charn

x = ([ϕ]) ∧ ([ϕ]): ([Tα])→G,I ψ

≡ below(∗)
x = ([ϕ]).

It remains to justify step (∗) . For this we argue

([ϕ]): ([Tα])→G,I ψ

≡ definition →G,I

([Tα]) ; G([ϕ]) = ([ϕ]) ; ψ

≡ rhs: cata-Fusion (condition ‘ψ: ϕ→F Tϕ ’ follows from E(ϕ, ψ) )

([Tα]) ; G([ϕ]) = ([Tϕ])

⇐ cata-Fusion

Tα ; G([ϕ]) = FG([ϕ]) ; Tϕ

⇐ Transformer

α ; ([ϕ]) = F ([ϕ]) ; ϕ

≡ cata-Self

true.

2

Similarly one may specify an F +G -algebra ϕ∇ψ by forcing the ψ -part to be determined
by the ϕ -part. In this case ψ is an additional derived operation that is a “constructor”,
like ϕ .

47 Theorem. Let T be a transformer of type (F, I) → (G, I) , and suppose that
α = µF exists. Let E be the law suggested by

E(ϕ ∇ ψ) ≡ “ ψ = Tϕ ” .

Then α ∇ Tα is initial in Alg(F +G;E) .
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Proof. We show initiality of α ∇ Tα by establishing cata-Charn. Let ϕ ∇ ψ be an
arbitrary F +G -algebra for which E holds. Then

x: α ∇ Tα →F+G ϕ ∇ ψ

≡ definition →F+G

x: α→F ϕ ∧ x: Tα→G ψ

≡ cata-Charn

x = ([ϕ]) ∧ ([ϕ]): Tα→G ψ

≡ below(∗)
x = ([ϕ]).

Step (∗) is verified as follows.

([ϕ]): Tα→G ψ

≡ law E holds for ϕ ∇ ψ

([ϕ]): Tα→G Tϕ

⇐ Transformer

([ϕ]): α→F ϕ

≡ cata-Self

true.

2

It is straightforward to combine both theorems, and generalise to the case of triples
(ϕ, ψ, χ) where ϕ is an F,G -dialgebra, ψ is an H -algebra, and χ is a J -co-algebra, all
with the same carrier, and ψ, χ being determined in terms of ϕ by means of a law.

5h Conclusion

We have proposed a semantical, categorical, characterisation of what a term (as used
in conditional equations) is: the Transformer property. The property is almost as
simple as the defining property of functor, and a mapping that satisfies the Transformer
property is called ‘transformer’. The reasonability of the proposal has been shown by
various theorems on the expressiveness of transformers. The simplicity of various proofs
dealing with laws is further evidence of the success of the notion of transformer.

The notion of transformer seems to allow for a great simplification of the theory of equa-
tional specification of datatypes as far as only semantic aspects are concerned. Compare
for example the exposition in Section 5g with current literature on ‘equational specification
of datatypes’ such as Ehrig and Mahr’s book [17]. Our formalism is entirely directed to
the semantics (of algebras, or datatypes), whereas signatures and other syntactic aspects
are prominently present in Ehrig and Mahr’s formalism. As a result, even in the discus-
sions of purely semantic aspects they are forced to take into account irrelevant aspects like
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scope rules —appearing in the decision to incorporate a parameter algebra into the result
algebra— and sharing of implementations —appearing in the notion of persistency— and
so on. This gives a lot of unnecessary junk and confusion, and such a treatise is in no
way initial. The use of transformer avoids the introduction of non-semantic aspects. Much
more in this area can be done.

Thanks to the formalisation of the notion of law, one can now formulate conjectures,
statements and proofs about them in general. For example, since long there was a feeling
that so-called lifting preserves the validity of all “algebraic” laws; for instance, a lifted
commutative operation is itself commutative as well. Recently, Meertens and Van der
Woude have been able to formally prove this conjecture — using the notion of transformer.



Chapter 6

Order-enriched categories

An order-enriched category is a category each of whose morphism-set is a
pointed cpo, so that monotone mappings on the morphisms have a –unique–
least solution. Examples are CPO and CPO⊥ , the latter containing only the
strict morphisms of the former. For a wide class of functors F an F -algebra
exists that is initial with respect to the strict morphisms, and in general not
with respect to the nonstrict morphisms. For such functors the catamorphism
constructor “([ ])” can be extended to nonstrict morphisms while still satisfying
catamorphism-like properties.

In an order-enriched category the inverse of an initial F -algebra is a final F -
co-algebra. This fact enables a formalisation of an important programming
paradigm, the use of virtual datastructures, that is problematic to describe
otherwise.

This chapter reports about joint work with Erik Meijer [24] and Erik Meijer and Ross
Paterson [51]. Since a lot of the program calculation laws will be proved and used by
Erik Meijer in his thesis [50], we set out to discuss the theoretical foundations and some
pragmatic issues only. We call an equation of the form x = Fx a fixed point equation
(since each solution of the equation is a fixed point of F , and conversely).

6a The main theorem

1 Fixed point equations. In the preceding chapters we have been dealing with equa-
tions having precisely one solution: the cata-, ana-, mutu-, para-, prepro-, or postpromor-
phism. There were no particular properties required of the underlying category. (Initial
algebras exist for polynomial functors if the category is an ω -category.) In this chapter

131
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we investigate the consequences of working in a category where fixed point equations

x = Fx
do have a –unique– least solution for monotone F .

Considering fixed points is readily motivated. First, in practice many algorithms are
expressed in such a form, that is, with arbitrary recursion and not only the kind of induction
provided by the cata-, ana-, etc. equations. In fact, almost all programming languages
explicitly allow an equation x = Fx as a definition of x (namely, defining x as the least
fixed point of F ). Secondly, if we wish that the formalism to express algorithms has
universal computing power, then more general fixed points should be expressible, since the
lambda calculus and any other formalism for computable functions has a way to express
fixed points too.

We hasten to say that many algorithms that nowadays seem to require arbitrary recur-
sion are as well expressible by a more restricted form of recursion, namely by an equation
that has provably a unique solution. I conjecture that several of the fixed point equations
(recursive functions) discussed by Sijtsma [67] do have a unique solution. The prepro-
equations in Section 4d originated from this very conjecture.

2 Order-enriched categories. There is a vast amount of literature presenting the
theory for least fixed points, mostly in the setting of Denotational Semantics; see for
example Schmidt [66] and the references he gives. Basically, in a pointed cpo (ω -complete
partial order with a least element ⊥) each monotone function has a least fixed point, and for
a ω -continuous function there is an effective way to compute or approximate the least fixed
point, namely by ω -repeated unfolding. (This generalises to other kinds of completeness
and continuity.) A category for which the set of morphisms from a to b is a pointed
cpo, for each a and b , is called an O -category (order-enriched). Moreover, we call the
category an O⊥ -category if, in addition, each least morphism ⊥a,b: a → b is a post-zero
of composition, that is, f ; ⊥b,c = ⊥a,c for all f : a→ b and c .

From now on we adhere to the convention that

C ranges over O⊥ -categories, and is the default category .

Category CPO is the prime example of an O⊥ -category; its objects are complete par-
tially ordered sets with a least element ⊥, and the morphisms are the continuous functions
between the objects. The pointed-cpo structure on the morphisms is induced by that of
the objects: f v g ≡ ∀(x :: fx v gx) , and ⊥a,b = λ(x ∈ a :: ⊥b). Order-enriched
categories have been studied extensively by Wand [75], Smyth and Plotkin [68], and Bos
and Hemerik [12]. Pierce [60] gives an overview of some of the results.

For later use we also define C⊥ ; it is the subcategory of C that has the same objects
as C and as morphisms only the strict morphisms of C . A morphism f : b → c is strict
if: ⊥a,b ; f = ⊥a,c for all a . For CPO this coincides with the usual notion of strictness,
namely f(⊥b) = ⊥c; the proof is easy and omitted. Clearly, C⊥ is an O⊥ -category if C is.
Notice that

the categorical dual of a strictness assertion is vacuously true,
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since the equation ⊥ ; f = ⊥ dualises to f ; ⊥ = ⊥ , and this latter equation is true on
account of the definition of O⊥ -category above.

Finally, a function (morphism mapping of a functor) is locally continuous if: for all
a, b the restriction of the function to the set of morphisms from a to b is continuous (with
respect to the partial order of the order-enriched category).

3 Notation. Since we shall be considering both C and C⊥ at the same time, the
notation Alg(F ) may be ambiguous. It is not, if we take care that each functor has just
one source and target —as it should be— for then the underlying category of Alg(F ) is
just srcF . However, we wish to consider a strictness preserving functor F on C also as
a functor on C⊥ without a change in notation, for that would be cumbersome. Hence we
indicate the underlying category explicitly, and write Alg(C;F ) and Alg(C⊥;F ) . Another
reading is this: the pair (C;F ) is an endofunctor on C , whereas the pair (C⊥;F ) is
an endofunctor on C⊥ , and for both of them the mapping on objects and morphisms is
given by the mapping F ; when applying functor (C⊥;F ) , say, we immediately unfold the
definition of (C⊥;F ) and write F in its place.

Even though in C and C⊥ least fixed points exist for monotone morphism-mappings, it
it still worthwhile to look for initial algebras and final co-algebras since the cata- and
ana-equations bring forth nice calculation properties. We present a theorem that is well
known, except perhaps for the finality claim; a consequence of the finality claim is that
UµF = UνF (or rather UµF ∼= UνF ). Section 6b is devoted to the proof of the theorem
and a generalisation to arbitrary order-enriched categories.

4 Theorem (Reynolds [63]) Let C be CPO , and F be a functor on C⊥ that is
locally continuous. Then Alg(C⊥;F ) has an initial object α , and for all ϕ in C (strict
and nonstrict)

x = α∪ ; Fx ; ϕ ⇒ x w ([ϕ]) cata-Least

and the comparison is not necessarily an equality. The inverse α∪ is final in CoAlg(C⊥;F ) ,
and even in CoAlg(C;F ) if F is a locally continuous functor on the whole of C .

5 Discussion. Law cata-Least is just an additional property of catamorphisms here;
cata-Charn is valid in CPO⊥ by definition of initiality.

In CPO all polynomial functors are locally continuous; see paragraph 13. Also each
type functor (map functor) M induced by † is readily shown to be locally continuous if
† is; the proof is a routine cpo continuity proof, and is much simpler than a proof of the
categorical ω -cocontinuity of M ; see Fokkinga and Meijer [24].

In view of the theorem strictness will play an essential rôle when discussing catamor-
phisms or cata-like concepts.
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6b Hylomorphisms

This section contains the proof of the theorem. Hylomorphisms are least fixed points of a
particular form, and are a useful tool for the proof and for programming in general.

6 Hylomorphisms. Let default category C be an arbitrary O⊥ -category. Equations
of the form x = ϕ ; Fx ; ψ play an important rôle; these specialise to both the cata-
and ana-equation. (In the previous chapters we didn’t consider these equations since in
general there is no unique solution, and it is only in the present context that the notion of
‘least’ solution makes sense.) So, by definition, the F -hylomorphism of ϕ, ψ , denoted
[[ϕ, ψ]]F , is: the least solution of that equation, that is,

[[ϕ, ψ]]F = least solution of x = ϕ ; Fx ; ψ .

For this to make sense as a definition in C it is required that F is a mapping such that
Fx: Fa → Fb for each x: a → b , and that F is continuous as a function of x (locally
continuous if F is a functor). There is no need, here, for the two other functor axioms to
be satisfied. Moreover, ϕ must be an F -co-algebra and ψ an F -algebra.

ϕ is F -co-algebra and ψ is G -algebra ⇒ [[ϕ, ψ]]F : Uϕ→ Uψ hylo-Type

(Erik Meijer has coined the name hylomorphism; hylo comes from the Greek ύλη meaning
“matter”, after the Aristotelian philosophy that form(= generated) and matter(= reduced)
are one.) Here are some laws for F -hylomorphisms, for a locally continuous endofunctor
F on C .

ϕ, ψ strict, F preserves strictness ⇒ [[ϕ, ψ]] strict hylo-Strict

f : ϕ >−F ψ ∧ g: χ→F ω ∧ g strict ⇒ f ; [[ψ, χ]] ; g = [[ϕ, ω]] hylo-Fusion

ψ ; χ = id ⇒ [[ϕ, ψ]] ; [[χ, ω]] = [[ϕ, ω]] hylo-Compose

ε: F .→G ⇒ [[ϕ, ε ; ψ]]F = [[ϕ ; ε, ψ]]G hylo-Shift

Meijer [50] gives the –simple– proofs; using least fixed point induction, also called Scott-
deBakker induction, for all but hylo-Shift.

7 Proof of the theorem. Reynolds [63] proves Theorem 4, except for the last statement,
for the particular case C = CPO . Schmidt [66, Chapter 11] gives a readable and precise
account of Reynolds’ proof. The crux of the proof is Scott’s inverse limit construction; it
yields a strict F -algebra α such that the inverse α∪ exists and is strict, and idUα = [[α∪, α]] .

Aside. Actually, (α∪, α) is initial in the category of fixed points of FPR in CPR ,
where CPR is the category of PRojection pairs, or retractions, of C . A retraction
from a to b is a pair (f : a→ b, g: b→ a) satisfying f ; g = id a and g ; f v id b .
It is easy to see that both components of a retraction are strict. In the inverse limit
construction only strict functions play a rôle; F is applied only to strict functions,
and the construction is carried out entirely in C⊥ . (Formally, CPR = (C⊥)PR .)
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Now, this result implies the other positive parts of the theorem in a nice way. First we
show that taking [[α∪, ϕ]] as ([ϕ]) makes cata-Charn true on C⊥ . We do so by establishing
the equivalence by circular implication as follows. For each strict x ,

x = [[α∪, ϕ]]

≡ above: id = [[α∪, α]]

[[α∪, α]] ; x = [[α∪, ϕ]]

⇐ hylo-Fusion, noting that x is assumed to be strict

α ; x = Fx ; ϕ

⇐ fixed point property, definition hylo as a fixed point

x = [[α∪, ϕ]].

Moreover, for strict ϕ , hylomorphism [[α∪, ϕ]] is itself strict by hylo-Strict and strictness
of α∪, hence it is in Alg(C⊥;F ) as required. So, α is initial in Alg(C⊥;F ) .

The proof that α∪ is final in CoAlg(C⊥;F ) , or even in CoAlg(C;F ) if F is locally con-
tinuous functor on C , is entirely dual. (The strictness conditions disappear by dualisation,
as observed in paragraph 2.) Actually, from the initiality of α in Alg(C⊥;F ) it follows
that id = [[α∪, α]] , hence, by the above argument, that α∪ is final in CoAlg(C⊥;F ) .

An example in paragraph 9 confirms that, in general, α is not initial in Alg(CPO ;F ) .

8 Abstracting from CPO . The inverse limit construction employed by Reynolds
does not depend on specific properties of category CPO . Abstracting from CPO , the
conditions on the category and the functor are:

C is a localised O⊥ -category, with CPR being an ω -category.
F is a locally continuous functor on C⊥ .

Smyth and Plotkin [68] and Bos and Hemerik [12] generalise Reynolds’ proof discussed in
paragraph 7 to this more general setting (and define the notion ‘localised’), except, maybe,
for the equation id = [[α∪, α]] . (I couldn’t find this equation in their papers, but it is
certainly derivable from their by-products.)

9 Strictness inevitable. There is no simple modification to the equational character-
isation of ([ϕ]) that makes it valid for nonstrict ϕ as well. Thus initiality in Alg(C⊥;F )
is the best possible result. In particular we shall prove the following discrepancies, for
some C, F, α that meet the conditions of the theorem, and some ϕ, x . Here $ is some
“strictifying” function; the only properties that we assume of $ are $ϕ = ϕ for strict ϕ ,
and $ϕ is strict for each ϕ .

[[α∪, ϕ]] = x 6≡ α ; x = Fx ; ϕ(a)
[[α∪, ϕ]] = x 6≡ α ; x = Fx ; ϕ ∧ x strict(b)
[[α∪, ϕ]] = x 6≡ α ; x = Fx ; $ϕ(c)
[[α∪, ϕ]] = x 6≡ α ; x = Fx ; $ϕ ∧ x strict .(d)
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True enough for all ϕ and x in C

[[α∪, $ϕ]] = x ≡ α ; x = Fx ; $ϕ ∧ x strict ,(e)

but in view of the assumed properties of $ this equivales initiality of α in Alg(C⊥;F ) ,
which we already know.

For (a) and (c) observe that in general a fixed point ( x in the rhs) need not be the
least fixed point (x in the lhs). Specifically, let C = CPO and F = I (hence Uα = {⊥}
and α = ⊥ = α∪). Furthermore, let a be a cpo with an element • different from ⊥a, and
take ϕ = ida (which is strict). Then both the constant functions x := ⊥a and x := •
satisfy the right hand side, and since they differ they do not both satisfy the equality of
the left hand side. So for at least one of them the discrepancy is true.

For (b) and (d) observe that the left hand side does not imply ‘x strict’. Specifically,
let C = CPO , let a be a cpo with an element • different from ⊥a, and take F = a and
ϕ = •: a → a . Take x = [[α∪, ϕ]] = ϕ , which is not strict. So the left hand side is true,
the right hand side is false, and therefore the discrepancy is true.

As an aside we conclude that Theorem 4 is invalidated when ‘Alg(CPO⊥;F )’ is replaced
by ‘the category ContAlg(CPO ;F ) of continuous F -algebras’. Here ContAlg(CPO ;F )
is: the subcategory of Alg(CPO ;F ) in which the morphisms are the strict morphisms
of CPO . (Category Alg(CPO⊥;F ) is a full subcategory of ContAlg(CPO , F ) .) The
counterexample is given in (b) above. This contradicts the claim of Reynolds [63], namely
that ContAlg(CPO , F ) has an initial object α with [[α∪, ϕ]] being the unique morphism
from α to ϕ . Indeed, his proof shows initiality of α in Alg(CPO⊥;F ) , since he treats
the (possibly singleton) collection ϕs (for s ∈ S ) of operations of an algebra, as a single
operation ∇(s ∈ S :: ϕs) , with ∇ defined as the ∇ -operation for the separated sum in
paragraph 13 below. For the separated sum, ∇(s ∈ S :: ϕs) is strict, even if the ϕs are
not.

6c Consequences

10 A programming paradigm. The equality νF = (µF )∪ (which is what the theorem
implies for C⊥ ) allows a formalisation of a programming paradigm that has been —up to
now— problematic to formalise otherwise.

Suppose a function f : a → b has been specified in some way or another, and it is
requested to design an algorithm, a program, for f . The following procedure is sometimes
(often?) applicable. Invent a datastructure, tree say, that can be built in an easy way
from f ’s input, and from which f ’s output is easily obtained. “Easy” means: in a
homomorphic way, say the datastructure is generated by an anamorphism from the input,
and the datastructure is reduced by a catamorphism to the output. Thus

f = generate ; reduce : a→ b
where
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generate = db(divide)ecF : a→ c
reduce = ([conquer ])F : c→ b ,

for some operations divide and conquer . Here, c is the type of the intermediate data-
structure. These equations imply that UνF = c = UµF . In case the initial F -algebra
has an inverse that is a final F -co-algebra too, there is no contradiction here. But in Set
and in other categories this is not the case in general, and the above equations together
are sometimes absurd.

The equality νF = (µF )∪ is sufficient but not necessary. What is really needed is that
the “range” of the F -anamorphism generate is embeddable in the carrier of the initial
F -algebra, so that the proper expression for f would read generate ; embed ; reduce . I
do not know under what conditions on the category and the functor such an embedding
exists, except for the case at hand: order-enriched categories.

Since the inverse α∪ of the initial algebra α is the final co-algebra β , function f itself
satisfies a fixed point equation too.

f = generate ; reduce
= divide ; F generate ; β∪ ; α∪ ; F reduce ; conquer
= divide ; F (generate ; reduce) ; conquer
= divide ; Ff ; conquer .

Actually, by hylo-Split 12 function f is the least fixed point of this equation. The opera-
tional evaluation of the f so defined does no longer refer to the intermediate datastructure
of type c . Thus that value is a virtual datastructure that has been of great help in the
algorithm design but does not exist at all during program execution.

The name ‘virtual datastructure’ has been coined by Doaitse Swierstra [71]; he used
the method to derive a linear time algorithm for the so-called low segment problem and
related problems (In the low segment problem, fx = the longest low segment in list x ; a
segment is low if: the maximum value in it is at most its length).

11 Extending “catamorphisms”. Theorem 4 asserts, for a large class of functors
F , the existence of an algebra that is initial in Alg(C⊥;F ) but not necessarily initial in
Alg(C;F ) . So function ([ ]) is not applicable to nonstrict ϕ . Law cata-Least suggests
the possibility to extend function ([ ]) to nonstrict ϕ , with the definition that ([ϕ]) is the
least solution x of the equation x = α∪ ; Fx ; ϕ.

These observations raise the question whether C⊥ or C should be taken as the universe
of discourse, and whether function ([ ]) should be extended to nonstrict ϕ . Here are three
alternatives.

Take C as universe of discourse and extend ([ ]) .(a)
Take C as universe of discourse and don’t extend ([ ]) .(b)
Take C⊥ as universe of discourse.(c)

Let us discuss these in turn.
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Ad (a). Obviously, cata-Charn does not hold in C , since in general α is not initial
in Alg(C;F ) . Moreover, as shown in paragraph 9, there is no simple modification to cata-
Charn that makes it valid for the extended ([ ]) as well. Nevertheless, it will turn out
that cata-Charn and the other laws are valid for the extended ([ ]) provided strictness is
assumed of only some of the ingredients of the law.

Ad (b). When functions may be nonstrict and ([ ]) is not extended, then in the laws
for ([ ]) strictness is to be required for all the ingredients. This gives laws that are less
applicable than in the first alternative.

Ad (c). The last alternative is to take C⊥ as the universe of discourse, and discard
nonstrict functions altogether. This is the approach followed by Ross Paterson [58, 59].
He did not notice the initiality asserted by Theorem 4, but only weak initiality.

We shall explore alternative (a) somewhat further.

12 Laws for the “extended catamorphisms”. To illustrate the consequences of
extending the notation ([ ]) to nonstrict algebras (for which it is no longer a catamorphism)
we list here without proof some of those laws. Meijer [50] discusses them in detail.

([ϕ]) = [[α∪, ϕ]] (= least solution of x = α∪ ; Fx ; ϕ) cata-Lfp

ϕ strict ⇒ ([ϕ]) strict cata-Strict

x: α→F ϕ ∧ x strict ≡ x = ([ϕ]) ∧ ϕ strict cata-Charn

x, y: α→F ϕ ∧ ϕ strict ⇒ x = y cata-Uniq

x: ϕ→F ψ ∧ x strict ⇒ ([ϕ]) ; x = ([ψ]) cata-Fusion

ϕ ; ψ = id ⇒ ([ϕ]) ; db(ψ)ec = id cata-ana-Id

[[ϕ, ψ]] = db(ϕ)ec ; ([ψ]) hylo-Split

Notice that hylo-Split only makes sense if UνF = UµF , which is implied by the theorem.

13 Sum in CPO . There are two kinds of disjoint union in CPO . The coalesced sum
a⊕ b identifies ⊥a and ⊥b in the union into ⊥a+b. The separated sum a+ b keeps ⊥a and ⊥b
apart in the union and adds a new bottom element ⊥a+b. (Further details are not relevant
here, and may be obvious anyway.) Category CPO has no categorical sum, whereas the
coalesced sum ⊕ is a categorical sum in CPO⊥ . Manes and Arbib [45] explain this in
detail. Both + and ⊕ are locally continuous functors on CPO⊥ , and + is a locally
continuous functor on CPO too, whereas ⊕ is not a functor on CPO .

What kind of sum to choose? The coalesced sum ⊕ , being a categorical sum, has nice
calculation properties. The separated sum + corresponds closely to the disjoint union
in fully lazy functional languages (as explained below). The carrier of µ(1 + I) has an
infinite element (the number ‘infinite’ is the limit of all succn(⊥)), whereas the carrier of
µ(1 ⊕ I) is the flat cpo with elements 0, 1, 2, . . . ordered besides each other and above
⊥. Sometimes infinite elements are wanted (in particular for lists) and sometimes they are
unwanted (think of the algebra of natural numbers), so the language designer might choose
to provide both. Lehmann and Smyth [40] discuss this phenomenon extensively.
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Even though the separated sum + is not a categorical sum in CPO⊥ , it satisfies
exactly the ∇ -Charn property in CPO⊥ , and therefore it has almost the same calculation
properties as the coalesced sum ⊕ has. To be specific, here is the definition of the separated
sum. (In this definition variables A,B denote sets (pointed cpo’s) and a, b, x, y denote
elements.)

A+B = {⊥} ∪ {0} × A ∪ {1} × B
x v y ≡ x = ⊥ ∨ (x0 = y0 ∧ x1 v y1)
f ∇ g = ⊥ 7→ ⊥ ∪ (0, a) 7→ f(a) ∪ (1, b) 7→ g(b)
inl = a 7→ (0, a)
inr = b 7→ (1, b) .

Now recall the equivalence ∇ -Charn that characterises the categorical sum:

inl ; f = g ∧ inr ; f = h ≡ f = g ∇ h .

The equivalence does not hold on CPO since CPO has no sums; indeed, the right hand
side determines f completely for given g, h but the left hand side does not determine the
outcome of f(⊥). The equivalence does hold on CPO⊥ , that is, when f, g, h range over
strict morphisms, as is easily verified. Yet the separated sum is not a categorical sum in
CPO⊥ ; this is because inl and inr as defined above are not in CPO⊥ since they are not
strict.

In an operational interpretation the difference between the separated and coalesced sum
is explained as follows. In case of the separated sum, value (0, ⊥a) as input for a program
f means that the tag 0 is fully determined and f can use this information to produce
already some part of its output, e.g., the tag of its result, or the complete result if it is
independent of the actual tagged value. In case of the coalesced sum, however, (0, ⊥a) is
identified with (1, ⊥b) into ⊥a+b, and for program f there is no information at all, not even
the information that the tag of the input is 0 . Clearly both sums are implementable.

Similar observations hold for the cartesian product and smashed product.

6d Conclusion

A quick glance at the literature shows without any doubt that many algorithms are defined
as least solutions of equations x = Fx for which it is unknown whether there is a unique
solution, or for which it is known that there are several solutions. As long as these kind
of algorithms are being derived a theory that deals with this phenomenon is needed. Our
joint study shows that the very elegant laws for initiality get lost in the setting of lazy eval-
uation (full CPO ), but similar properties still do hold at the cost of —nasty— strictness
conditions. (It is, in fact, unwise to call the extended catamorphism still a catamorphism,
since it is not a catamorphism in the sense of paragraph 3.26 and 3.30.) In particular,
equational reasoning may still be possible to a large extent.

The alternative is to reason and program with strict functions only, taking CPO⊥ as
the universe of discourse. After all, this does not prohibit infinite datastructures (streams)
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as we have already seen in the previous chapters, and the additional advantage of CPO⊥
over Set , say, is the existence of least fixed points. As in the previous chapters the
resulting theory is elegant, but it is not applicable to modern functional languages since
these do contain nonstrict functions. (The wish that “substitution of equals for equals”
doesn’t change the semantics of programs, together with the presence of nonterminating
programs, requires functions to be nonstrict. For example, suppose that f has been defined
by the syntactic declaration ‘ fx = 3 ’, suggesting that fx and 3 may be substituted for
each other. If really fx equals 3 for all x , even when x denotes ⊥, then f is nonstrict.)



Appendix A

Category theory

There are several good introductory texts to category theory for computing scientists; for
example, Goldblatt [27, Chapter 2,3,9], Barr and Wells [7], and Pierce [60]. These are
strongly recommended, in that order. This appendix introduces only what is needed to
read the main text (and also explains a bit of my perception of the concepts involved).

1 Definition. A category is: the following data, subject to the axioms listed in para-
graph 3.

• A collection of things called objects.

• A collection of things called morphisms, sometimes called arrows.

• Two functions from morphisms to objects, called source and target function.

• A binary partial operation on morphisms, called composition.

• For each object a a distinguished morphism, called identity on a .

Actually, these data define (the basic terms of) the categorical language in which prop-
erties of the category can be stated. If you happen to know what the objects really are,
you may use those aspects in your statements, but then you are not working categorically.
Category Set is: the category whose objects are sets, whose morphisms are typed total
functions, and whose composition and identities are function composition and identity
functions respectively; these do satisfy the axioms listed below. Thus, doing set theory
categorically enforces the strait jacket of expressing everything with function composi-
tion only, without using explicit arguments (set elements) and function application. Once
mastered it is an elegant way of expressing. We shall often interpret our results in Set .

2 Notation. Here is some default notation for categories. The name of a category
may and should be added as a subscript or otherwise in order to avoid confusion when
there are several categories under discussion. Let A be a category. The source and target
function are denoted src and tgt . The infix written composition is denoted ; or ◦ or not
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at all (juxtaposition) with the convention f ; g = g ◦ f = g f . Within a term denoting a
morphism, the symbol ; has strongest separation power (binds weakest); juxtaposition
has strongest binding power, more than any binary operation symbol. Let a be an object
in A ; then the identity on a is denoted ida , and the subscript is omitted if it is clear or
can be derived from the context. Formula f : a →A b means that a and b are objects
in A and f is a morphism in A with source a and target b ; we also say that f is a
morphism from a to b , and that a→ b is the type of f in A .

3 Axioms. With the above notation the axioms read, for a category A :

• If f : a→A b and g: b→A c , then f ; g : a→A c .

• For each object a of A , id a: a→A a .

• Composition is associative.

• Whenever f : a→A b , then ida ; f = f = f ; id b .

The axioms are so basic that we shall nowhere invoke or mention them explicitly. Whenever
we write a composition, we assume that the free variables are typed in such a way that the
composition is defined, that is, the sources and targets match.

4 Discussion. The notion of category has been designed to formalise in a uniform
way the intuitive notion of (various kinds of) mathematical structure. Concrete examples
of structure are: no structure at all, partial order, and complete partial order; abstract
structures like diagrams and algebras turn up in Chapter 2 and 3 respectively. The data
and axioms of a category should fix the structure of interest. However, the above axioms
are so weak that not only many structures can be rendered as a category, but also categories
exist for which there is no interpretation as formalising a known or reasonable mathematical
structure: each directed graph is a category (if all the finite compositions of arrows are
adjoined as arrows).

Uniformity is achieved by modeling structure “externally,” that is, via the structure
preserving transformations only, and not as an aspect of an object in isolation. Formulas —
expressing properties of a category— can only be built by the data of the category, mainly
composition of morphisms, using logical connectives and quantifications. Thus, whereas the
objects may be thought to carry the structure, it is the morphisms that effectively represent
the structure. (Hence the word morphism: µoρϕη means form or structure.) For example,
suppose you want to study complete partially ordered sets, and thus take sets as the objects
of the category. If you take all functions between sets as morphisms, then the equations
in this category do not state properties of the structure you are interested in. However,
if you take precisely the monotonic functions as the morphisms, then in this category the
equations do say something about the partial order: the monotonic functions are precisely
those that preserve the partial order. To investigate the completeness (existence of limits)
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too, you should take the continuous (= limit preserving) functions as morphisms. Of
course, you may investigate all three at the same time: categories need not be disjoint.

The axioms on the morphisms and composition are motivated by the observation that
for all (?) mathematical structures the structure-preserving transformations do satisfy
them. As we’ve said, they are very weak. By imposing extra axioms, still in the categorical
language, the categories may have more of the properties you are interested in. For example,
a topos is a category whose extra axioms give those properties of objects that are quite
characteristic of sets; and this is done by “external” means only: set membership is not
used at all. We shall nowhere need the axioms for a topos. As a result, our results are often
very general, and hence very weak at the same time. Nevertheless, I myself was surprised
that theorems relevant for transformational programming could be proved for categories
admitting interpretations that no human being can ever imagine.

5 Isomorphism. Let A be a category, and a, b be objects in A . Then a and b are
called isomorphic in A if: there exist morphisms f : a →A b and g: b →A a that are
each others inverse, that is, f ; g = id a and g ; f = id b . In this case we write a ∼=A b
and f : a ∼=A b , and say f and g are isomorphisms. If a and b are isomorphic and
f : a→A b , then there is precisely one g: b→A a satisfying f ; g = ida and g ; f = id b .

If P is a property of objects that holds for precisely one entire class of isomorphic
objects, then we often speak of the P -object rather than of an object satisfying P ; we
also say that the object is unique up to isomorphism. For example, in Set ‘the one-point
set’ is unique up to isomorphism; it is denoted 1 .

Discussion. Isomorphic objects are often called ‘abstractly the same’ since for most
categorical purposes one is as good as the other: each morphism to/from the one can be
extended to a morphism to/from the other using the morphisms that establish the iso-
morphism. (The preceding sentence is informal intuition; I do not know of a formalisation
of the idea.) For example, in Set all sets of the same cardinality are isomorphic, hence
‘abstractly the same’. If you want to distinguish some of them on account of structural
properties, a partial order say, you should not take Set as the category but another one
for which the morphisms better reflect your intention.

6 Functor. A functor is a mapping from one category to another that preserves the
categorical structure. Functors form a tool to abstract from the source and target structure
of a morphism, see paragraph 8.

Formally, let A and B be categories; then a functor from A to B is: a mapping F
that sends objects of A to objects of B , and morphisms of A to morphisms of B in such
a way that

Ff : Fa→B Fb whenever f : a→A b
F ida = idFa for each object a in A
F (f ; g) = Ff ; Fg whenever f ; g is well defined

Formula F : A → B means that A and B are categories and F is a functor from A
to B . The identity functor from A to A is denoted I ; it is the identity on both the
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objects and the morphisms. For functors G: B → C and F : A → B , the composite GF
is defined by (GF )x = G(Fx) for all objects and morphisms x of A ; thus defined GF
is a functor of type A → C , and we write just GFx without parentheses. (Since functors
“preserve the structure” one may expect that they form the morphisms of a category; the
objects of that category are categories. Indeed, with the above definitions for I and FG
the axioms are fulfilled.) Let A and B be categories, and b an object in B ; then the
constant functor b: A → B is defined by b a = b and b f = id b for all objects a and
morphisms f in A . An endofunctor is: a functor whose source and target category are
the same.

7 Bifunctor. A bifunctor is a functor that takes two arguments rather than one. We
shall use † and ‡ as variables (infix operation symbols) for bifunctors. The axioms for a
bifunctor read:

f : a→ b ∧ g: c→ d ⇒ f † g: a † c→ b † d
(f ; g) † (h ; j) = f † h ; g † j
ida † id b = id a†b .

Actually, a bifunctor † from A, B to C is a normal functor †: A×B → C , where category
A × B is the so-called product category of A and B . The definition of the product
category of two categories is straightforward: everything is coordinatewise. Important
bifunctors are × and + ; in Set , a × b and a + b denote the cartesian product (with
extractions exl , exr ) and disjoint union (with injections inl , inr ) respectively. Applied
to functions the bifunctors × and + yield “componentwise acting” functions:

f × g ; exl = exl ; f
inl ; f + g = f ; inl ,

and similarly for exr , inr . (Rewrite these equations with explicit arguments and function
application to see the usual definitions.)

If † is a bifunctor and F,G are functors, then F † G denotes the functor defined by
(F †G)x = Fx †Gx for all objects and morphisms x . In particular, II = I × I ; it maps
each x onto x × x . The polynomial functors are those that can be written using I ,
all a , × and + , and functor composition only.

8 Source and target structure. Functors are a tool to abstract from the particular
source and target structure of morphisms (operations, functions, algebras). For example,
a binary operation on a has type a × a → a , that is, IIa → Ia . As another example,
function n 7→ (n div 10, n mod 10) has type Inat → IInat . More generally, a morphism
of type Fa→ Ga has a source type whose ‘structure’ is given by functor F ; the structure
of its target type is given by G . In a typing Fa→ Ga you may always read I or II for
F and G in order to get a less abstract typing. (Notice also that a may be an object
from a product category, so that effectively F and G may take several arguments.)
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9 Duality. In Set the cartesian product and disjoint union are in a sense dual to each
other, and each statement about one of these can be dualised to a statement about the other
(though dualisation need not preserve validity of the statements). For example, consider
the statement, theorem in Set , that a function f : a → b × c is fully determined by the
two composites f ; exl : a→ b and f ; exr : a→ c . Dualisation gives the statement, also a
theorem in Set , that a function f : b + c → a is fully determined by the two composites
inl ; f : b→ a and inr ; f : c→ a .

Dualisation D of a statement in the language of category theory is easy. Define the
dual Df of a term f in the categorical language by

D(srcf) = tgt(Df)
D(tgtf) = src(Df)
D(ida) = ida
D(f ; g) = Dg ; Df .

Then, for each definition expressed in the categorical language, of a concept or construction
xxx, you obtain another concept, often called co-xxx if no better name suggests itself, by
dualising each term in the definition. Also, for each equation f = g provable from the
above axioms of category theory (hence valid for all categories), the equation Df = Dg
is provable too. Thus dualisation cuts work in half, and gives each time two concepts or
theorems for the price of one. In this sense the cartesian product and disjoint union are
dual to each other in category Set .

Another easy way of dualising a term denoting a morphism is simply replacing each ;

by ◦ . However, the presence of both compositions for the same morphisms is not practical.

10 Naturality. Let F,G: A → B be functors. In the terminology of paragraph 8 each
Fa denotes a structured type and F denotes the structure itself. A ‘transformation’ from
structure F to structure G is, informally, something existing in B that provides for a
way to go from Fa to Ga , for each a . The transformation is natural if, in addition, every
two morphisms Ff and Gf are the same modulo the inevitable transformation between
their sources and targets.

Formally, a transformation from F to G is: a family ε of morphisms

εa : Fa→B Ga for each a in A .

A transformation ε from F to G is natural, denoted ε: F .→G , if:

Ff ; εb = εa ; Gf for each f : a→A b .

This formula is (so natural that it is) easy to remember: member εtarget f has type
F (target f) → G(target f) and therefore occurs at the target side of an occurrence of
f ; similarly εsource f occurs at the source side of an f . Moreover, since ε is a transfor-
mation from F to G , functor F occurs at the source side of an ε and functor G at the
target side.

The notation εa is an alternative for εa , and uses ε as a function.
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11 Example natural transformations. Natural transformations are all over the place.
Here are a few examples in Set .

The family id of all identities ida: a → a is a natural transformation id : I .→ I .
Indeed, for each f : a→ b

If ; id b = id a ; If .

The family splita: a → a × a , defined by splita(x) = (x, x) , is a natural transformation
split : I .→ II . Indeed, for each f : a→ b

f ; split b = splita ; IIf
that is,

split b (fx) = (fy, fz) where (y, z) = split a x, for all x ∈ a .

The family of extractions exl a,b: a× b→ a is a natural transformation exl : X × Y .→X ,
where X, Y = Exl ,Exr : Set ×Set → Set are the obvious extraction functors for product
categories. Indeed, for each (f, g): (a, b)→ (c, d)

f × g ; exl c,d = exla,b ; f
that is,

exl c,d (fx, gy) = f (exla,b (x, y)), for (x, y) ∈ a× b .

The family swapa,b: a × b → b × a defined by swapa,b(x, y) = (y, x) , is a natural trans-
formation swap: X × Y .→ Y × X , where again X, Y = Exl ,Exr . Indeed, for each
(f, g): (a, b)→ (c, d)

f × g ; swapc,d = swapa,b ; g × f
that is,

swapc,d(fx, gy) = (gu, fv) with (u, v) = swapa,b(x, y), all (x, y) ∈ a× b .

For the datatype of lists we define La = ‘the set of lists over a’ and Lf = the map
[x, y, z, . . .] 7→ [fx, fy, fz, . . .] . (Thus defined L is a functor.) Family joina: IILa → La
(joining two lists of type La ) is a natural transformation join: IIL .→ L since for each
f : a→ b

IILf ; joinb = joina ; Lf
that is,

(Lf)x joinb (Lf)y = (Lf) (x joina y), for all (x, y) ∈ La× La .

12 Omitting subscripts. Let A be a category, let F,G: Am → An be functors,
and ε: F .→ G be a natural transformation (here Ak is a k -fold product category).
Then we shall write just ε in a term denoting a morphism in A , thereby omitting the
subscripts. This is common practice, and can probably be formally justified since —I
conjecture— there is an algorithm that, given the types of the natural transformations and
the morphisms occurring in a term, yields for each occurrence in the term the most general
typing such that the entire composite is well typed (at all compositions the target and
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source type match). I haven’t checked this in general; for polynomial functors I suspect
that Milner’s [52] polymorphic type inference algorithm does the job.

The omission of subscripts applies to all the examples given above. When a so-called
cocone is considered as a natural transformation its subscripts cannot be omitted; this
occurs in Chapter 2. Also, in Chapter 5 a so-called transformer T is considered as a
natural transformation, and its subscript ϕ cannot be omitted since the outcome of Tϕ is
a morphism expressed in ϕ .

13 Laws for naturality. Write εa instead of εa , and define (Fε)a = F (εa) and
(εG)a = ε(Ga) . It follows that (Fε)G = F (εG) , and parentheses are not needed. Fur-
thermore, define (ε ; η)a = εa ; ηa . Some useful laws for natural transformations read:

id : I .→ I ntrf-Id

ε: F .→G ∧ η: G .→H ⇒ ε ; η: F .→H ntrf-Compose

ε: F .→G ⇒ HεJ : HFJ .→HGJ ntrf-Ftr

f : a→ b ≡ f : a .→ b ntrf-Const

εi: Fi .→Gi (i = 0, 1) ⇒ ε0 † ε1: F0 † F1 .→G0 †G1 ntrf-BiFtr

As announced in paragraph 3 it is assumed that the terms make sense; this constraints the
typing of the variables substantially. Law ntrf-BiFtr is a specialisation of ntrf-Ftr (using
product categories and bifunctors). Further ‘specialisations’ may be obtained when εa is
written without its ‘subscript’, and hence εG is written as ε . (Laws ntrf-Id and ntrf-
Compose assert that natural transformations form the morphisms of a category, where
functors are the objects.)

Here is an example (due to Roland Backhouse) of the use of the laws. Consider the
usual datatype of lists with Lf denoting the map [a0, a1, . . .] 7→ [fa0, fa1, . . .] . Suppose
inits, tails: L .→ LL and flatten: LL .→ L . Define segs = inits ; Ltails ; flatten . (Here
we write natural transformations without the subscript; otherwise we would have written
segs = inits ; Ltails ; flattenL .) Then segs: L .→ LL , as shown by

segs: L .→ LL

≡ definition segs

inits ; Ltails ; flatten: L .→ LL

⇐ ntrf-Compose

inits: L .→ LL ∧ Ltails: LL .→ LLL ∧ flatten: LLL .→ LL

⇐ ntrf-Ftr on middle and right conjunct

inits: L .→ LL ∧ tails: L .→ LL ∧ flatten: LL .→ L

≡ assumptions

true.

Actually, the assumptions are valid, and therefore the conclusion too.
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14 Epic, monic. For completeness’ sake two more definitions. A morphism f is epic
or an epimorphism if: f ; x = f ; y ⇒ x = y for all x, y (of the right type).
Dually, f is monic or a monomorphism if: x ; f = y ; f ⇒ x = y for all x, y . In
Set a monomorphism is injective, and an epimorphism is surjective; there exist Set -like
categories where this is not true.



Samenvatting

In Law and Order in Algorithmics onderzoeken we een methode om computerprogramma’s
te maken. Om te voorkomen dat het onderzoek te ingewikkeld wordt, laten we een hele-
boel aspekten buiten beschouwing, zowel van programma’s zelf als ook van het maken
van programma’s. Bijvoorbeeld, we bekommeren ons niet om de snelheid en benodigde
computercapaciteit van programma’s; we laten uitsluitend het invoer-uitvoer effect een rol
spelen in onze beschouwingen. Voor het maken van een programma gaan we ervan uit dat
er al een preciese beschrijving bekend is van het gewenste invoer-uitvoer effect; we houden
ons dus niet bezig met de vraag hoe zo’n beschrijving tot stand komt.

Algorithmics. De onderzochte methode om computerprogramma’s te maken, gaat als
volgt. Een programma wordt afgeleid uit de beschrijving van het gewenste invoer-uitvoer
effect door stap voor stap die beschrijving te veranderen (te transformeren) totdat uitein-
delijk een vorm bereikt wordt die zelf een bevredigend computerprogramma is. In het
bijzonder onderzoeken we d́ıe aanpak waarbij de stappen heel erg lijken op de rekenstap-
pen die bij de algebra op school gehanteerd worden. Bijvoorbeeld, in de algebra geldt:
(a+ b)(a− b) = a2 − b2 (we noemen dit een rekenregel), zodat bij het rekenen de uit-
drukking (a + b)(a − b) vervangen mag worden door a2 − b2 , en omgekeerd. Een reken-
regel is louter een gelijkheid van twee uitdrukkingen; de uitdrukkingen zijn verschillend
van vorm, maar hebben wel dezelfde uitkomst. De theorie en praktijk van het rekenen met
programma’s heet algoritmiek (engels: algorithmics). Meertens [47] en Bird [9] hebben
de eerste invulling aan algoritmiek gegeven. Ons werk is een aanvulling op de theorie ervan.

Law . . . . Een rekenregel noemen we ook wel wet (engels: law). In de rekenkunde zijn
veel wetten voor getallen bekend en in gebruik. Het systematisch ontdekken en gebruiken
van wetten voor programma’s is het hoofddoel van ons onderzoek. In Hoofdstuk 3–6 doen
we dit onderzoek, en maken daarbij gebruik van begrippen uit de categorie-theorie (een
tak van wiskunde).

In Hoofdstuk 2 hebben we het systematisch ontdekken en gebruiken van wetten ook
toegepast op categorie-theorie zelf. Het resultaat daarvan is een manier om in categorie-
theorie bewijzen te leveren die een alternatief is voor bestaande methoden.

In Hoofdstuk 3 beschrijven we programma’s met behulp van begrippen uit de categorie-
theorie. Deze beschrijving is sterk beinvloed door het werk van Malcolm [42] en Hagino [29],
en bevat op zich geen nieuwe resultaten.
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In Hoofdstuk 4 beschouwen we een paar soorten ‘recursieve’ programma’s. Voor deze
programma’s liggen een aantal wetten nogal voor de hand. We bewijzen de geldigheid van
die wetten formeel, en geven een toepassing ervan.

Een programma is recursief als het als onderdeel in zichzelf voorkomt of be-
noemd wordt, net zoals het spiegelbeeld bij twee spiegels die tegenover elkaar
staan: ieder spiegelbeeld komt in zichzelf voor. Recursieve programma’s komen
in de praktijk veel voor. Bij een recursief programma kán het zo zijn dat er
bij sommige invoer mogelijk niets aan uitvoer geproduceerd wordt, doordat de
computerberekening in een oneindige lus (recursie!) raakt. Bij de soorten van
recursieve programma’s van Hoofdstuk 4 treedt dit gevaar niet op; dus door
die recursieve programma’s wordt er, bij iedere invoer, uitvoer geproduceerd.

In Hoofdstuk 5 stellen we een karakterisering voor van het begrip ‘wet’ en onderzoeken
de eigenschappen ervan. Hiermee hebben we een gereedschap ontwikkeld dat het mogelijk
maakt om over wetten-in-het-algemeen stellingen te formuleren en te bewijzen. We geven
daarvan een paar eenvoudige voorbeelden.

. . . and order. Getuige de resultaten van Hoofdstukken 3 en 4 is het goed mogelijk te
rekenen met beperkt-recursieve programma’s. In de theorie voor algemenere soorten recur-
sie is het begrip ordening (engels: order), een begrip uit de wiskunde, haast onmisbaar.

In Hoofdstuk 6 onderzoeken we het ontdekken en gebruiken van wetten in situaties
waarbij zo’n ordening aanwezig is. Daarmee breiden we de theorie uit tot algemenere
vormen van recursie.

* * *

Ieder hoofdstuk begint met een korte technische samenvatting, en eindigt met een conclusie
waarin op de behaalde resultaten teruggeblikt wordt.
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; , composition of morphisms, 141

, (juxtaposition) composition, 142
◦ , composition (of functors), 141

, constant function/functor, 144

;; , composition involving pairs, 37
∪ , f∪ is the inverse of f

db( )ec, unique morphism onto final object, 16
anamorphism, 61

([ ]), unique morphism from initial object, 16,
catamorphism, 55

×, cartesian product, categorical product, 20

×, functor, 144, product of categories, 144

+, disjoint union, categorical sum, 18

+, functor, 144
∆, “tupling” or “pairing” (‘split’), 20
∇, “switch” or “case” (‘junc’), 18
0 , initial object, 16
1 , one-element set final object, 16

/, unique morphism to a kernel pair, 27

\, unique morphism from a colimit, 29

\, unique morphism from a coequaliser, 23∧
D, category of cones for D, 15∨
D, category of cocones for D, 15, 30∨
(a), category ‘under a’, 15∨
(a, a), cat. of parallel pairs with src a, 15∨
(f‖g), a particular category, 15∨
(f g), a particular category, 15∧
(p p), a particular category, 26

wt, pushout along right argument, 40

t, diagonal of pushout square, 40

t, union of proper equivalences, 39

tw, pushout along left argument, 40

→, typing in the default category, 6

→, typing of functors, 143

→A, typing in category A, 6

→F,G, typing of dialg-homomorphisms, 50

→F , typing of algebra-homomorphisms, 50

>−F , typing of co-alg-homomorphisms, 50
.→, naturality, 145
∼=, isomorphism, 143
:=, substitution
II, functor, = I × I, 144
†, ‡, infix bifunctors
./ , f./ is f -cascade, 96
µ , µF is the initial F -algebra, 58
ω, category of naturals, 32
ω, fω is f -iterate, 64

abide, 74, 88, 90
add , 7
adjunction, 117
Alg, 16, 50
algebra, 3, 16, 48, 50

continuous, 136
initial algebra with laws, 121
product of algebras, 120
subalgebra, 119

algorithm, 1
algorithmics, 1, 4
anamorphism, 61, 72
arrow, 141
assoc, 112
axioms, for a category, 142

bag, 111
banana split, 88
BiAlg, 81, 127
bialgebra, 80, 127
bifunctor, 144
Birkhoff characterisation, 118
bool , 60

C, coequaliser functor, 27
calculation, 5
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with initiality, 13
carrier, 16, 50
cascade, 96, 102
catamorphism, 55, 56, 72

extension of, 137
category, 3, 141

O-category, 132
ω-category, 31
built upon, 15
default, 6
language of, 141
order-enriched, 122, 132, 131–140

co-algebra, 49
co-slice, 15
co-. . . , 145
CoAlg , 50
cocone, 15, 29, 30
cocontinuous, 31
coequaliser, 21

as initial algebra, 125
functor C, 27

colimit, 29, 30
as initial algebra, 125

commutativity, 47
of diagram, 12

composition, 141
cone, 15
Congr , 35
congruence, 122

alg-, 35
base-, 35
induced, 35

cons , 7
cons ′, 9
cons list, 7, 52, 59, 70, 72, 84, 90
cons′ list, 7, 63, 65, 67
constituent, 3, 56, 62
constructor, 49, 56, 62, 128
ContAlg , 136
continuous

algebra, 136
locally, 133

CPO , 122, 131–140
cpo, 131–140

datastructure, virtual, 137

datatype, 49, 105
equational specification of, 127

destruct ′, 9
destructor, 56, 62, 127
diagram, 15, 29, 30

chasing, 12, 13
commuting, 12

DiAlg , 50
dialgebra, 49, 50
disjoint union, 18, 144
distributivity, 47
divide and conquer , 136
duality, 145

endofunctor, 144
enumerated type, 60
epic, see epimorphism
epimorphism, 148
equivalence relation, 21, 122, 124

proper, 21
union of, 38

Exl , 146
exl , extraction (projection), 20, 146
Exr , 146
exr , extraction (projection), 20, 146
extraction, 144

finality, 16, 61
fixed point, 57, 131

unique, 56, 62, 83–102
flatten , 147
forgetful, see underlying
from , 8
functor, 143

models source/target structure, 144
polynomial, 144

generate, 137

hd , 8
homomorphic image, 119
homomorphism, 16, 49, 50

doesn’t preserve laws, 120
hylomorphism, 134

I, identity functor, 143
identity, 141
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incoming mono, 119
initiality, 16, 29, 55

existence of initial algebra, 31, 58
initial algebra with laws, 121

initial many-sorted algebras, 79

inits , 147
injection, 144

inl , injection in disjoint union or sum, 18

inr , injection in disjoint union or sum, 18
isempty , 7

isempty ′, 9
isomorphism, 17, 143

iterate, 64, 65, 75, 102

join, 107, 146

join list, 111, 146

junc, name or pronunciation of ∇

K, kernel pair functor, 27

kernel pair, 25
functor K, 27

L, cons list functor, 7
L′, finite-and-infinite list functor, 9

law, 2, 105, 110
conjunction of, 117

exploitation of, 124

use of, 110
laws

for a category, 142
for anamorphism, 61, 89

for catamorphism, 55, 89

for coequaliser, 23, 24
for colimit, 29, 30

for extended catamorphism, 138

for homomorphisms, 53, 54
for hylomorphism, 134

for initiality, 16, 17, 24
for kernel pair, 27

for mutumorphism, 87

for naturality, 147
for postpromorphism, 101

for prepromorphism, 98, 100, 101
for prodtype, 71

for sum and product, 21

for sumtype, 71

for transformer, 109
lifting, 130
list, see cons, cons′, join list and stream

M , see sumtype, prodtype, map functor
many-sortedness, 78
map, 8, 67, 146, see also type functor
monic, see monomorphism
monomorphism, 148
morphism, 141, see also :

anamorphism
catamorphism
epimorphism
homomorphism
hylomorphism
isomorphism
monomorphism
mutumorphism
postpromorphism
prepromorphism
zygomorphism

Mu, 76, 98
mutumorphism, 87, 86–88, 99

nat , 7, 59
nats , 8, 64
natural transformation, see naturality
naturality, 145

omitting subscripts, 146
naturals, 7, 51, 58, 59, 61
nil , 7, 107
nil ′, 9
nils , 64, 90

object, 141
ones , 64
order, 2
outgoing epi, 119

parallel pair, 15
paramorphism, 83, 87
pattern matching, 56, 62
postpromorphism, 101
pred , 59
preds , 65
prepromorphism, 98, 96–102, 132
prodtype(), 73
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prodtype, 72
prodtype functor, 69
product

categorical, 20
of algebras, 120
of categories, 144

programming
a paradigm, 136

transformational, 1, 3
promotion, 48
pushout, 16, 40

reduce , 137

relation, 21, 25
reverse, 77
rose tree, 52

S, stream functor, 8, successor on ω, 32

section notation, 68
segs , 147

Set , 141
set, as datastructure, 111
shape

of diagram, 30
preservation of, 97

shape , 73, 77

signature, 105
size, 7, 76, 107, 112, 124
size ′, 9

sketch, 105
snoc list, 84

source, 141
split, name or pronunciation of ∆

split , 102, 111, 146

src, 141
stack , 80, 127
stream, 7, 52, 62, 64, 72, 74, 90, 102

strict, 132, 135
structure preservation, 97
succ, 7, 59

sum
as initial algebra, 60, 73

categorical, 19, 72
coalesced, 138
in CPO , 138

separated, 138

sumsquares , 73
sumtype(), 73
sumtype, 72
sumtype functor, 68, 69
supermap, 96
swap, 77, 112, 146

T , transformer
tails , 147
take lemma, 75
target, 141
tgt, 141
tip, 107
tl , 8
transformer, 71, 75, 109, 105–130
transp , 90
tree, 52, 60, 77, 107, 110, 111, 121, 124
type functor, 68, 70

factorisation of, 76, 77
typing, 5, 12, 105, 142, 146, 147

U , 50
underlying functor U , 51
union, of equivalence relations, 38
until, 67

variety, 122
views on datatypes, 84
virtual datastructure, 137

zero, 7, 59
zip, 74, 90
zipwith , 74, 90
zygomorphism, 87
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